Mila organise son premier hackathon en informatique quantique le 21 novembre. Une journée unique pour explorer le prototypage quantique et l’IA, collaborer sur les plateformes de Quandela et IBM, et apprendre, échanger et réseauter dans un environnement stimulant au cœur de l’écosystème québécois en IA et en quantique.
Une nouvelle initiative pour renforcer les liens entre la communauté de recherche, les partenaires et les expert·e·s en IA à travers le Québec et le Canada, grâce à des rencontres et événements en présentiel axés sur l’adoption de l’IA dans l’industrie.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Zac Kenton
Alumni
Publications
On the Relation Between the Sharpest Directions of DNN Loss and the SGD Step Length
Stochastic Gradient Descent (SGD) based training of neural networks with a large learning rate or a small batch-size typically ends in well-… (voir plus)generalizing, flat regions of the weight space, as indicated by small eigenvalues of the Hessian of the training loss. However, the curvature along the SGD trajectory is poorly understood. An empirical investigation shows that initially SGD visits increasingly sharp regions, reaching a maximum sharpness determined by both the learning rate and the batch-size of SGD. When studying the SGD dynamics in relation to the sharpest directions in this initial phase, we find that the SGD step is large compared to the curvature and commonly fails to minimize the loss along the sharpest directions. Furthermore, using a reduced learning rate along these directions can improve training speed while leading to both sharper and better generalizing solutions compared to vanilla SGD. In summary, our analysis of the dynamics of SGD in the subspace of the sharpest directions shows that they influence the regions that SGD steers to (where larger learning rate or smaller batch size result in wider regions visited), the overall training speed, and the generalization ability of the final model.
Stochastic gradient descent (SGD) is able to find regions that generalize well, even in drastically over-parametrized models such as deep ne… (voir plus)ural networks. We observe that noise in SGD controls the spectral norm and conditioning of the Hessian throughout the training. We hypothesize the cause of this phenomenon is due to the dynamics of neurons saturating their non-linearity along the largest curvature directions, thus leading to improved conditioning.
It has been discussed that over-parameterized deep neural networks (DNNs) trained using stochastic gradient descent (SGD) with smaller batch… (voir plus) sizes generalize better compared with those trained with larger batch sizes. Additionally, model parameters found by small batch size SGD tend to be in flatter regions. We extend these empirical observations and experimentally show that both large learning rate and small batch size contribute towards SGD finding flatter minima that generalize well. Conversely, we find that small learning rates and large batch sizes lead to sharper minima that correlate with poor generalization in DNNs.
We study the statistical properties of the endpoint of stochastic gradient descent (SGD). We approximate SGD as a stochastic differential eq… (voir plus)uation (SDE) and consider its Boltzmann Gibbs equilibrium distribution under the assumption of isotropic variance in loss gradients.. Through this analysis, we find that three factors – learning rate, batch size and the variance of the loss gradients – control the trade-off between the depth and width of the minima found by SGD, with wider minima favoured by a higher ratio of learning rate to batch size. In the equilibrium distribution only the ratio of learning rate to batch size appears, implying that it’s invariant under a simultaneous rescaling of each by the same amount. We experimentally show how learning rate and batch size affect SGD from two perspectives: the endpoint of SGD and the dynamics that lead up to it. For the endpoint, the experiments suggest the endpoint of SGD is similar under simultaneous rescaling of batch size and learning rate, and also that a higher ratio leads to flatter minima, both findings are consistent with our theoretical analysis. We note experimentally that the dynamics also seem to be similar under the same rescaling of learning rate and batch size, which we explore showing that one can exchange batch size and learning rate in a cyclical learning rate schedule. Next, we illustrate how noise affects memorization, showing that high noise levels lead to better generalization. Finally, we find experimentally that the similarity under simultaneous rescaling of learning rate and batch size breaks down if the learning rate gets too large or the batch size gets too small.