Portrait de Victor Schmidt

Victor Schmidt

Alumni

Publications

Image-to-image Mapping with Many Domains by Sparse Attribute Transfer
Towards Lifelong Self-Supervision For Unpaired Image-to-Image Translation
Unpaired Image-to-Image Translation (I2IT) tasks often suffer from lack of data, a problem which self-supervised learning (SSL) has recently… (voir plus) been very popular and successful at tackling. Leveraging auxiliary tasks such as rotation prediction or generative colorization, SSL can produce better and more robust representations in a low data regime. Training such tasks along an I2IT task is however computationally intractable as model size and the number of task grow. On the other hand, learning sequentially could incur catastrophic forgetting of previously learned tasks. To alleviate this, we introduce Lifelong Self-Supervision (LiSS) as a way to pre-train an I2IT model (e.g., CycleGAN) on a set of self-supervised auxiliary tasks. By keeping an exponential moving average of past encoders and distilling the accumulated knowledge, we are able to maintain the network's validation performance on a number of tasks without any form of replay, parameter isolation or retraining techniques typically used in continual learning. We show that models trained with LiSS perform better on past tasks, while also being more robust than the CycleGAN baseline to color bias and entity entanglement (when two entities are very close).
Modeling Cloud Reflectance Fields using Conditional Generative Adversarial Networks
We introduce a conditional Generative Adversarial Network (cGAN) approach to generate cloud reflectance fields (CRFs) conditioned on large s… (voir plus)cale meteorological variables such as sea surface temperature and relative humidity. We show that our trained model can generate realistic CRFs from the corresponding meteorological observations, which represents a step towards a data-driven framework for stochastic cloud parameterization.
Using Simulated Data to Generate Images of Climate Change
Gautier Cosne
Adrien Juraver
Mélisande Teng
Alexandra Luccioni
Generative adversarial networks (GANs) used in domain adaptation tasks have the ability to generate images that are both realistic and perso… (voir plus)nalized, transforming an input image while maintaining its identifiable characteristics. However, they often require a large quantity of training data to produce high-quality images in a robust way, which limits their usability in cases when access to data is limited. In our paper, we explore the potential of using images from a simulated 3D environment to improve a domain adaptation task carried out by the MUNIT architecture, aiming to use the resulting images to raise awareness of the potential future impacts of climate change.
Artificial Intelligence Based Cloud Distributor (AI-CD): Probing Low Cloud Distribution with Generative Adversarial Neural Networks
T. Yuan
H. Song
David Hall
Visualizing the Consequences of Climate Change Using Cycle-Consistent Adversarial Networks
Alexandra Luccioni
S. Karthik Mukkavilli
Narmada Balasooriya
Jennifer T Chayes
We present a project that aims to generate images that depict accurate, vivid, and personalized outcomes of climate change using Cycle-Consi… (voir plus)stent Adversarial Networks (CycleGANs). By training our CycleGAN model on street-view images of houses before and after extreme weather events (e.g. floods, forest fires, etc.), we learn a mapping that can then be applied to images of locations that have not yet experienced these events. This visual transformation is paired with climate model predictions to assess likelihood and type of climate-related events in the long term (50 years) in order to bring the future closer in the viewers mind. The eventual goal of our project is to enable individuals to make more informed choices about their climate future by creating a more visceral understanding of the effects of climate change, while maintaining scientific credibility by drawing on climate model projections.