Mila organise son premier hackathon en informatique quantique le 21 novembre. Une journée unique pour explorer le prototypage quantique et l’IA, collaborer sur les plateformes de Quandela et IBM, et apprendre, échanger et réseauter dans un environnement stimulant au cœur de l’écosystème québécois en IA et en quantique.
Une nouvelle initiative pour renforcer les liens entre la communauté de recherche, les partenaires et les expert·e·s en IA à travers le Québec et le Canada, grâce à des rencontres et événements en présentiel axés sur l’adoption de l’IA dans l’industrie.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Susan Amin
Alumni
Publications
Membership Inference Attacks Against Temporally Correlated Data in Deep Reinforcement Learning
While significant research advances have been made in the field of deep reinforcement learning, there have been no concrete adversarial atta… (voir plus)ck strategies in literature tailored for studying the vulnerability of deep reinforcement learning algorithms to membership inference attacks. In such attacking systems, the adversary targets the set of collected input data on which the deep reinforcement learning algorithm has been trained. To address this gap, we propose an adversarial attack framework designed for testing the vulnerability of a state-of-the-art deep reinforcement learning algorithm to a membership inference attack. In particular, we design a series of experiments to investigate the impact of temporal correlation, which naturally exists in reinforcement learning training data, on the probability of information leakage. Moreover, we compare the performance of collective and individual membership attacks against the deep reinforcement learning algorithm. Experimental results show that the proposed adversarial attack framework is surprisingly effective at inferring data with an accuracy exceeding 84% in individual and 97% in collective modes in three different continuous control Mujoco tasks, which raises serious privacy concerns in this regard. Finally, we show that the learning state of the reinforcement learning algorithm influences the level of privacy breaches significantly.
A major challenge in reinforcement learning is the design of exploration strategies, especially for environments with sparse reward structur… (voir plus)es and continuous state and action spaces. Intuitively, if the reinforcement signal is very scarce, the agent should rely on some form of short-term memory in order to cover its environment efficiently. We propose a new exploration method, based on two intuitions: (1) the choice of the next exploratory action should depend not only on the (Markovian) state of the environment, but also on the agent's trajectory so far, and (2) the agent should utilize a measure of spread in the state space to avoid getting stuck in a small region. Our method leverages concepts often used in statistical physics to provide explanations for the behavior of simplified (polymer) chains in order to generate persistent (locally self-avoiding) trajectories in state space. We discuss the theoretical properties of locally self-avoiding walks and their ability to provide a kind of short-term memory through a decaying temporal correlation within the trajectory. We provide empirical evaluations of our approach in a simulated 2D navigation task, as well as higher-dimensional MuJoCo continuous control locomotion tasks with sparse rewards.
2021-07-01
Proceedings of the 38th International Conference on Machine Learning (publié)
Where Did You Learn That From? Surprising Effectiveness of Membership Inference Attacks Against Temporally Correlated Data in Deep Reinforcement Learning