Portrait de Sébastien Lemieux

Sébastien Lemieux

Membre académique associé
Professeur associé, Université de Montréal, Département d'informatique et de recherche opérationnelle et Département de biochimie et de médecine moléculaire
Sujets de recherche
Biologie computationnelle
Modélisation moléculaire

Biographie

Microbiologiste de formation, Sébastien Lemieux s'est tourné vers la bio-informatique en 1997 et a réalisé des études de maîtrise et de doctorat à l'Université de Montréal sous la direction de François Major. Après avoir obtenu son doctorat en 2002, le jeune chercheur s'est dirigé vers le secteur privé et a effectué un stage postdoctoral chez Elitra Canada (maintenant Merck & Co.) sous la supervision de Bo Jiang. Il y a acquis des compétences en analyse de séquences et en analyse de données de microréseaux d'ADN, ainsi qu'en intégration informatique de données expérimentales.

Il a finalement rejoint les rangs de l'Institut de recherche en immunologie et en cancérologie (IRIC) en 2005. En 2018, il a été nommé professeur agrégé au Département de biochimie et médecine moléculaire de la Faculté de médecine de l'Université de Montréal.

Étudiants actuels

Maîtrise recherche - UdeM
Maîtrise recherche - UdeM

Publications

Proteogenomics and Differential Ion Mobility Enable the Exploration of the Mutational Landscape in Colon Cancer Cells
Zhaoguan Wu
Eric Bonneil
Michael Belford
Cornelia Boeser
Maria-Virginia Ruiz Cuevas
Jean-Jacques Dunyach
Pierre Thibault
Two types of human TCR differentially regulate reactivity to self and non-self antigens
Assya Trofimov
Philippe Brouillard
Jean-David Larouche
Jonathan Séguin
Jean-Philippe Laverdure
Ann Brasey
Grégory Ehx
Denis-Claude Roy
Lambert Busque
Silvy Lachance
Claude Perreault
Induced pluripotent stem cells display a distinct set of MHC I-associated peptides shared by human cancers
Anca Apavaloaei
Leslie Hesnard
Marie-Pierre Hardy
Basma Benabdallah
Grégory Ehx
Catherine Thériault
Jean-Philippe Laverdure
Chantal Durette
Joël Lanoix
Mathieu Courcelles
Nandita Noronha
Kapil Dev Chauhan
Christian Beauséjour
Mick Bhatia
Pierre Thibault
Claude Perreault
Two types of human TCR differentially regulate reactivity to self and non-self antigens
Assya Trofimov
Philippe Brouillard
Jean-David Larouche
Jonathan Y. Séguin
Jean-Philippe Laverdure
A. Brasey
Grégory Ehx
D. Roy
Lambert Busque
Silvy Lachance
Claude Perreault
Monoallelic Heb/Tcf12 Deletion Reduces the Requirement for NOTCH1 Hyperactivation in T-Cell Acute Lymphoblastic Leukemia
Diogo F. T. Veiga
Mathieu R. Tremblay
Bastien Gerby
Sabine Herblot
André Haman
Patrick Gendron
J. Zúñiga-Pflücker
Josée Hébert
Joseph Paul Cohen
T. Hoang
Early T-cell development is precisely controlled by E proteins, that indistinguishably include HEB/TCF12 and E2A/TCF3 transcription factors,… (voir plus) together with NOTCH1 and pre-T cell receptor (TCR) signalling. Importantly, perturbations of early T-cell regulatory networks are implicated in leukemogenesis. NOTCH1 gain of function mutations invariably lead to T-cell acute lymphoblastic leukemia (T-ALL), whereas inhibition of E proteins accelerates leukemogenesis. Thus, NOTCH1, pre-TCR, E2A and HEB functions are intertwined, but how these pathways contribute individually or synergistically to leukemogenesis remain to be documented. To directly address these questions, we leveraged Cd3e-deficient mice in which pre-TCR signaling and progression through β-selection is abrogated to dissect and decouple the roles of pre-TCR, NOTCH1, E2A and HEB in SCL/TAL1-induced T-ALL, via the use of Notch1 gain of function transgenic (Notch1ICtg) and Tcf12+/- or Tcf3+/- heterozygote mice. As a result, we now provide evidence that both HEB and E2A restrain cell proliferation at the β-selection checkpoint while the clonal expansion of SCL-LMO1-induced pre-leukemic stem cells in T-ALL is uniquely dependent on Tcf12 gene dosage. At the molecular level, HEB protein levels are decreased via proteasomal degradation at the leukemic stage, pointing to a reversible loss of function mechanism. Moreover, in SCL-LMO1-induced T-ALL, loss of one Tcf12 allele is sufficient to bypass pre-TCR signaling which is required for Notch1 gain of function mutations and for progression to T-ALL. In contrast, Tcf12 monoallelic deletion does not accelerate Notch1IC-induced T-ALL, indicating that Tcf12 and Notch1 operate in the same pathway. Finally, we identify a tumor suppressor gene set downstream of HEB, exhibiting significantly lower expression levels in pediatric T-ALL compared to B-ALL and brain cancer samples, the three most frequent pediatric cancers. In summary, our results indicate a tumor suppressor function of HEB/TCF12 in T-ALL to mitigate cell proliferation controlled by NOTCH1 in pre-leukemic stem cells and prevent NOTCH1-driven progression to T-ALL.
Monoallelic Heb/Tcf12 Deletion Reduces the Requirement for NOTCH1 Hyperactivation in T-Cell Acute Lymphoblastic Leukemia
Diogo F. T. Veiga
Mathieu Tremblay
Bastien Gerby
Sabine Herblot
André Haman
Patrick Gendron
Juan Carlos Zúñiga-Pflücker
Josée Hébert
Joseph Paul Cohen
Trang Hoang
Early T-cell development is precisely controlled by E proteins, that indistinguishably include HEB/TCF12 and E2A/TCF3 transcription factors,… (voir plus) together with NOTCH1 and pre-T cell receptor (TCR) signalling. Importantly, perturbations of early T-cell regulatory networks are implicated in leukemogenesis. NOTCH1 gain of function mutations invariably lead to T-cell acute lymphoblastic leukemia (T-ALL), whereas inhibition of E proteins accelerates leukemogenesis. Thus, NOTCH1, pre-TCR, E2A and HEB functions are intertwined, but how these pathways contribute individually or synergistically to leukemogenesis remain to be documented. To directly address these questions, we leveraged Cd3e-deficient mice in which pre-TCR signaling and progression through β-selection is abrogated to dissect and decouple the roles of pre-TCR, NOTCH1, E2A and HEB in SCL/TAL1-induced T-ALL, via the use of Notch1 gain of function transgenic (Notch1ICtg) and Tcf12+/- or Tcf3+/- heterozygote mice. As a result, we now provide evidence that both HEB and E2A restrain cell proliferation at the β-selection checkpoint while the clonal expansion of SCL-LMO1-induced pre-leukemic stem cells in T-ALL is uniquely dependent on Tcf12 gene dosage. At the molecular level, HEB protein levels are decreased via proteasomal degradation at the leukemic stage, pointing to a reversible loss of function mechanism. Moreover, in SCL-LMO1-induced T-ALL, loss of one Tcf12 allele is sufficient to bypass pre-TCR signaling which is required for Notch1 gain of function mutations and for progression to T-ALL. In contrast, Tcf12 monoallelic deletion does not accelerate Notch1IC-induced T-ALL, indicating that Tcf12 and Notch1 operate in the same pathway. Finally, we identify a tumor suppressor gene set downstream of HEB, exhibiting significantly lower expression levels in pediatric T-ALL compared to B-ALL and brain cancer samples, the three most frequent pediatric cancers. In summary, our results indicate a tumor suppressor function of HEB/TCF12 in T-ALL to mitigate cell proliferation controlled by NOTCH1 in pre-leukemic stem cells and prevent NOTCH1-driven progression to T-ALL.
Vesicular trafficking is a key determinant of the statin response in acute myeloid leukemia
Jana K Krosl
Marie-Eve Bordeleau
Céline Moison
Tara MacRae
Isabel Boivin
Nadine Mayotte
Deanne Gracias
Irène Baccelli
Vincent-Philippe Lavallee
Richard Bisaillon
Bernhard Lehnertz
Rodrigo Mendoza-Sanchez
Réjean Ruel
Thierry Bertomeu
Jasmin Coulombe-Huntington
Geneviève Boucher
Nandita Noronha
C. Pabst
M. Tyers
Patrick Gendron … (voir 5 de plus)
Frederic Barabe
Anne Marinier
Josée Hébert
Guy Sauvageau
Key Points Inhibition of RAB protein function mediates the anti–acute myeloid leukemia activity of statins. Statin sensitivity is associat… (voir plus)ed with enhanced vesicle-mediated traffic.
Vesicular trafficking is a key determinant of the statin response in acute myeloid leukemia
Jana Krosl
Marie-Eve Bordeleau
Céline Moison
Tara MacRae
Isabel Boivin
Nadine Mayotte
Deanne Gracias
Irène Baccelli
Vincent-Philippe Lavallee
Richard Bisaillon
Bernhard Lehnertz
Rodrigo Mendoza-Sanchez
Réjean Ruel
Thierry Bertomeu
Jasmin Coulombe-Huntington
Geneviève Boucher
Nandita Noronha
Caroline Pabst
Mike Tyers
Patrick Gendron … (voir 5 de plus)
Frederic Barabe
Anne Marinier
Josée Hébert
Guy Sauvageau
Key Points Inhibition of RAB protein function mediates the anti–acute myeloid leukemia activity of statins. Statin sensitivity is associat… (voir plus)ed with enhanced vesicle-mediated traffic.
CAMAP: Artificial neural networks unveil the role of codon arrangement in modulating MHC-I peptides presentation
Tariq Daouda
Maude Dumont-Lagacé
Albert Feghaly
Yahya Benslimane
Rébecca Panes
Mathieu Courcelles
Mohamed Benhammadi
Lea Harrington
Pierre Thibault
François Major
Étienne Gagnon
Claude Perreault
MHC-I associated peptides (MAPs) play a central role in the elimination of virus-infected and neoplastic cells by CD8 T cells. However, accu… (voir plus)rately predicting the MAP repertoire remains difficult, because only a fraction of the transcriptome generates MAPs. In this study, we investigated whether codon arrangement (usage and placement) regulates MAP biogenesis. We developed an artificial neural network called Codon Arrangement MAP Predictor (CAMAP), predicting MAP presentation solely from mRNA sequences flanking the MAP-coding codons (MCCs), while excluding the MCC per se. CAMAP predictions were significantly more accurate when using original codon sequences than shuffled codon sequences which reflect amino acid usage. Furthermore, predictions were independent of mRNA expression and MAP binding affinity to MHC-I molecules and applied to several cell types and species. Combining MAP ligand scores, transcript expression level and CAMAP scores was particularly useful to increaser MAP prediction accuracy. Using an in vitro assay, we showed that varying the synonymous codons in the regions flanking the MCCs (without changing the amino acid sequence) resulted in significant modulation of MAP presentation at the cell surface. Taken together, our results demonstrate the role of codon arrangement in the regulation of MAP presentation and support integration of both translational and post-translational events in predictive algorithms to ameliorate modeling of the immunopeptidome. Author summary MHC-I associated peptides (MAPs) are small fragments of intracellular proteins presented at the surface of cells and used by the immune system to detect and eliminate cancerous or virus-infected cells. While it is theoretically possible to predict which portions of the intracellular proteins will be naturally processed by the cells to ultimately reach the surface, current methodologies have prohibitively high false discovery rates. Here we introduce an artificial neural network called Codon Arrangement MAP Predictor (CAMAP) which integrates information from mRNA-to-protein translation to other factors regulating MAP biogenesis (e.g. MAP ligand score and transcript expression levels) to improve MAP prediction accuracy. While most MAP predictive approaches focus on MAP sequences per se, CAMAP’s novelty is to analyze the MAP-flanking mRNA sequences, thereby providing completely independent information for MAP prediction. We show on several datasets that the integration of CAMAP scores with other known factors involved in MAP presentation (i.e. MAP ligand score and mRNA expression) significantly improves MAP prediction accuracy, and further validate CAMAP learned features using an in-vitro assay. These findings may have major implications for the design of vaccines against cancers and viruses, and in times of pandemics could accelerate the identification of relevant MAPs of viral origins.
CAMAP: Artificial neural networks unveil the role of 1 codon arrangement in modulating MHC-I peptides 2 presentation
Tariq Daouda
Maude Dumont-Lagacé
Albert Feghaly
Yahya Benslimane
6. Rébecca
Panes
Mathieu Courcelles
Mohamed Benhammadi
Lea Harrington
Pierre Thibault
François Major
Étienne Gagnon
Claude Perreault
30 MHC-I associated peptides (MAPs) play a central role in the elimination of virus-infected and 31 neoplastic cells by CD8 T cells. However… (voir plus), accurately predicting the MAP repertoire remains 32 difficult, because only a fraction of the transcriptome generates MAPs. In this study, we 33 investigated whether codon arrangement (usage and placement) regulates MAP biogenesis. We 34 developed an artificial neural network called Codon Arrangement MAP Predictor (CAMAP), 35 predicting MAP presentation solely from mRNA sequences flanking the MAP-coding codons 36 (MCCs), while excluding the MCC per se . CAMAP predictions were significantly more accurate 37 when using original codon sequences than shuffled codon sequences which reflect amino acid 38 usage. Furthermore, predictions were independent of mRNA expression and MAP binding affinity 39 to MHC-I molecules and applied to several cell types and species. Combining MAP ligand scores, 40 transcript expression level and CAMAP scores was particularly useful to increaser MAP prediction 41 accuracy. Using an in vitro assay, we showed that varying the synonymous codons in the regions 42 flanking the MCCs (without changing the amino acid sequence) resulted in significant modulation 43 of MAP presentation at the cell surface. Taken together, our results demonstrate the role of codon 44 arrangement in the regulation of MAP presentation and support integration of both translational 45 and post-translational events in predictive algorithms to ameliorate modeling of the 46 immunopeptidome. 47 48 49 they modulated the levels of SIINFEKL presentation in both constructs, but enhanced translation efficiency could only be detected for OVA-RP. These data show that codon arrangement can modulate MAP presentation strength without any changes in the amino
CAMAP: Artificial neural networks unveil the role of 1 codon arrangement in modulating MHC-I peptides 2 presentation discovery of minor histocompatibility with
Tariq Daouda
Maude Dumont-Lagacé
Albert Feghaly
Yahya Benslimane
6. Rébecca
Panes
Mathieu Courcelles
Mohamed Benhammadi
Lea Harrington
Pierre Thibault
François Major
Étienne Gagnon
Claude Perreault
30 MHC-I associated peptides (MAPs) play a central role in the elimination of virus-infected and 31 neoplastic cells by CD8 T cells. However… (voir plus), accurately predicting the MAP repertoire remains 32 difficult, because only a fraction of the transcriptome generates MAPs. In this study, we 33 investigated whether codon arrangement (usage and placement) regulates MAP biogenesis. We 34 developed an artificial neural network called Codon Arrangement MAP Predictor (CAMAP), 35 predicting MAP presentation solely from mRNA sequences flanking the MAP-coding codons 36 (MCCs), while excluding the MCC per se . CAMAP predictions were significantly more accurate 37 when using original codon sequences than shuffled codon sequences which reflect amino acid 38 usage. Furthermore, predictions were independent of mRNA expression and MAP binding affinity 39 to MHC-I molecules and applied to several cell types and species. Combining MAP ligand scores, 40 transcript expression level and CAMAP scores was particularly useful to increaser MAP prediction 41 accuracy. Using an in vitro assay, we showed that varying the synonymous codons in the regions 42 flanking the MCCs (without changing the amino acid sequence) resulted in significant modulation 43 of MAP presentation at the cell surface. Taken together, our results demonstrate the role of codon 44 arrangement in the regulation of MAP presentation and support integration of both translational 45 and post-translational events in predictive algorithms to ameliorate modeling of the 46 immunopeptidome. 47 48 49 they modulated the levels of SIINFEKL presentation in both constructs, but enhanced translation efficiency could only be detected for OVA-RP. These data show that codon arrangement can modulate MAP presentation strength without any changes in the amino
Factorized embeddings learns rich and biologically meaningful embedding spaces using factorized tensor decomposition
Assya Trofimov
Joseph Paul Cohen
Claude Perreault