Une nouvelle initiative pour renforcer les liens entre la communauté de recherche, les partenaires et les expert·e·s en IA à travers le Québec et le Canada, grâce à des rencontres et événements en présentiel axés sur l’adoption de l’IA dans l’industrie.
Mila organise son premier hackathon en informatique quantique le 21 novembre. Une journée unique pour explorer le prototypage quantique et l’IA, collaborer sur les plateformes de Quandela et IBM, et apprendre, échanger et réseauter dans un environnement stimulant au cœur de l’écosystème québécois en IA et en quantique.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Scott Fujimoto
Alumni
Publications
Scalable Option Learning in High-Throughput Environments
Hierarchical reinforcement learning (RL) has the potential to enable effective decision-making over long timescales. Existing approaches, wh… (voir plus)ile promising, have yet to realize the benefits of large-scale training. In this work, we identify and solve several key challenges in scaling hierarchical RL to high-throughput environments. We propose Scalable Option Learning (SOL), a highly scalable hierarchical RL algorithm which achieves a 25x higher throughput compared to existing hierarchical methods. We train our hierarchical agents using 20 billion frames of experience on the complex game of NetHack, significantly surpassing flat agents and demonstrating positive scaling trends. We also validate our algorithm on MiniHack and Mujoco environments, showcasing its general applicability. Our code is open sourced at github.com/facebookresearch/sol.
Hierarchical reinforcement learning (RL) has the potential to enable effective decision-making over long timescales. Existing approaches, wh… (voir plus)ile promising, have yet to realize the benefits of large-scale training. In this work, we identify and solve several key challenges in scaling online hierarchical RL to high-throughput environments. We propose Scalable Option Learning (SOL), a highly scalable hierarchical RL algorithm which achieves a ~35x higher throughput compared to existing hierarchical methods. To demonstrate SOL's performance and scalability, we train hierarchical agents using 30 billion frames of experience on the complex game of NetHack, significantly surpassing flat agents and demonstrating positive scaling trends. We also validate SOL on MiniHack and Mujoco environments, showcasing its general applicability. Our code is open sourced at: github.com/facebookresearch/sol.
In this paper, we investigate the use of small datasets in the context of offline reinforcement learning (RL). While many common offline RL … (voir plus)benchmarks employ datasets with over a million data points, many offline RL applications rely on considerably smaller datasets. We show that offline RL algorithms can overfit on small datasets, resulting in poor performance. To address this challenge, we introduce"Sparse-Reg": a regularization technique based on sparsity to mitigate overfitting in offline reinforcement learning, enabling effective learning in limited data settings and outperforming state-of-the-art baselines in continuous control.
In this paper, we investigate the use of small datasets in the context of offline reinforcement learning (RL). While many common offline RL … (voir plus)benchmarks employ datasets with over a million data points, many offline RL applications rely on considerably smaller datasets. We show that offline RL algorithms can overfit on small datasets, resulting in poor performance. To address this challenge, we introduce"Sparse-Reg": a regularization technique based on sparsity to mitigate overfitting in offline reinforcement learning, enabling effective learning in limited data settings and outperforming state-of-the-art baselines in continuous control.
In this paper we leverage self-supervised vision transformer models and their emergent semantic abilities to improve the generalization abil… (voir plus)ities of imitation learning policies. We introduce BC-ViT, an imitation learning algorithm that leverages rich DINO pre-trained Visual Transformer (ViT) patch-level embeddings to obtain better generalization when learning through demonstrations. Our learner sees the world by clustering appearance features into semantic concepts, forming stable keypoints that generalize across a wide range of appearance variations and object types. We show that this representation enables generalized behaviour by evaluating imitation learning across a diverse dataset of object manipulation tasks. Our method, data and evaluation approach are made available to facilitate further study of generalization in Imitation Learners.
2025-05-19
2025 IEEE International Conference on Robotics and Automation (ICRA) (publié)
Reinforcement learning (RL) promises a framework for near-universal problem-solving. In practice however, RL algorithms are often tailored t… (voir plus)o specific benchmarks, relying on carefully tuned hyperparameters and algorithmic choices. Recently, powerful model-based RL methods have shown impressive general results across benchmarks but come at the cost of increased complexity and slow run times, limiting their broader applicability. In this paper, we attempt to find a unifying model-free deep RL algorithm that can address a diverse class of domains and problem settings. To achieve this, we leverage model-based representations that approximately linearize the value function, taking advantage of the denser task objectives used by model-based RL while avoiding the costs associated with planning or simulated trajectories. We evaluate our algorithm, MR.Q, on a variety of common RL benchmarks with a single set of hyperparameters and show a competitive performance against domain-specific and general baselines, providing a concrete step towards building general-purpose model-free deep RL algorithms.
Ensuring long-term fairness is crucial when developing automated decision making systems, specifically in dynamic and sequential environment… (voir plus)s. By maximizing their reward without consideration of fairness, AI agents can introduce disparities in their treatment of groups or individuals. In this paper, we establish the connection between bisimulation metrics and group fairness in reinforcement learning. We propose a novel approach that leverages bisimulation metrics to learn reward functions and observation dynamics, ensuring that learners treat groups fairly while reflecting the original problem. We demonstrate the effectiveness of our method in addressing disparities in sequential decision making problems through empirical evaluation on a standard fairness benchmark consisting of lending and college admission scenarios.
Ensuring long-term fairness is crucial when developing automated decision making systems, specifically in dynamic and sequential environment… (voir plus)s. By maximizing their reward without consideration of fairness, AI agents can introduce disparities in their treatment of groups or individuals. In this paper, we establish the connection between bisimulation metrics and group fairness in reinforcement learning. We propose a novel approach that leverages bisimulation metrics to learn reward functions and observation dynamics, ensuring that learners treat groups fairly while reflecting the original problem. We demonstrate the effectiveness of our method in addressing disparities in sequential decision making problems through empirical evaluation on a standard fairness benchmark consisting of lending and college admission scenarios.
In the field of reinforcement learning (RL), representation learning is a proven tool for complex image-based tasks, but is often overlooked… (voir plus) for environments with low-level states, such as physical control problems. This paper introduces SALE, a novel approach for learning embeddings that model the nuanced interaction between state and action, enabling effective representation learning from low-level states. We extensively study the design space of these embeddings and highlight important design considerations. We integrate SALE and an adaptation of checkpoints for RL into TD3 to form the TD7 algorithm, which significantly outperforms existing continuous control algorithms. On OpenAI gym benchmark tasks, TD7 has an average performance gain of 276.7% and 50.7% over TD3 at 300k and 5M time steps, respectively, and works in both the online and offline settings.
In this work, we study the use of the Bellman equation as a surrogate objective for value prediction accuracy. While the Bellman equation is… (voir plus) uniquely solved by the true value function over all state-action pairs, we find that the Bellman error (the difference between both sides of the equation) is a poor proxy for the accuracy of the value function. In particular, we show that (1) due to cancellations from both sides of the Bellman equation, the magnitude of the Bellman error is only weakly related to the distance to the true value function, even when considering all state-action pairs, and (2) in the finite data regime, the Bellman equation can be satisfied exactly by infinitely many suboptimal solutions. This means that the Bellman error can be minimized without improving the accuracy of the value function. We demonstrate these phenomena through a series of propositions, illustrative toy examples, and empirical analysis in standard benchmark domains.
2022-06-28
Proceedings of the 39th International Conference on Machine Learning (publié)