Mila organise son premier hackathon en informatique quantique le 21 novembre. Une journée unique pour explorer le prototypage quantique et l’IA, collaborer sur les plateformes de Quandela et IBM, et apprendre, échanger et réseauter dans un environnement stimulant au cœur de l’écosystème québécois en IA et en quantique.
Une nouvelle initiative pour renforcer les liens entre la communauté de recherche, les partenaires et les expert·e·s en IA à travers le Québec et le Canada, grâce à des rencontres et événements en présentiel axés sur l’adoption de l’IA dans l’industrie.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Mohamad Elmasri
Alumni
Publications
Predictive inference for travel time on transportation networks
Travel time is essential for making travel decisions in real-world transportation networks. Understanding its distribution can resolve many … (voir plus)fundamental problems in transportation. Empirically, single-edge travel-time is well studied, but how to aggregate such information over many edges to arrive at the distribution of travel time over a route is still daunting. A range of statistical tools have been developed for network analysis; tools to study statistical behaviors of processes on dynamical networks are still lacking. This paper develops a novel statistical perspective to specific type of mixing ergodic processes (travel time), that mimic the behavior of travel time on real-world networks. Under general conditions on the single-edge speed (resistance) distribution, we show that travel time, normalized by distance, follows a Gaussian distribution with universal mean and variance parameters. We propose efficient inference methods for such parameters, and consequently asymptotic universal confidence and prediction intervals of travel time. We further develop path(route)-specific parameters that enable tighter Gaussian-based prediction intervals. We illustrate our methods with a real-world case study using mobile GPS data, where we show that the route-specific and universal intervals both achieve the 95\% theoretical coverage levels. Moreover, the route-specific prediction intervals result in tighter bounds that outperform competing models.
Prediction intervals for travel time on transportation networks
Estimating travel-time is essential for making travel decisions in transportation networks. Empirically, single road-segment travel-time is … (voir plus)well studied, but how to aggregate such information over many edges to arrive at the distribution of travel time over a route is still theoretically challenging. Understanding travel-time distribution can help resolve many fundamental problems in transportation, quantifying travel uncertainty as an example. We develop a novel statistical perspective to specific types of dynamical processes that mimic the behavior of travel time on real-world networks. We show that, under general conditions, travel-time normalized by distance, follows a Gaussian distribution with route-invariant (universal) location and scale parameters. We develop efficient inference methods for such parameters, with which we propose asymptotic universal confidence and prediction intervals of travel time. We further develop our theory to include road-segment level information to construct route-specific location and scale parameter sequences that produce tighter route-specific Gaussian-based prediction intervals. We illustrate our methods with a real-world case study using precollected mobile GPS data, where we show that the route-specific and route-invariant intervals both achieve the 95\% theoretical coverage levels, where the former result in tighter bounds that also outperform competing models.