Mila is hosting its first quantum computing hackathon on November 21, a unique day to explore quantum and AI prototyping, collaborate on Quandela and IBM platforms, and learn, share, and network in a stimulating environment at the heart of Quebec’s AI and quantum ecosystem.
This new initiative aims to strengthen connections between Mila’s research community, its partners, and AI experts across Quebec and Canada through in-person meetings and events focused on AI adoption in industry.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Mohamad Elmasri
Alumni
Publications
Predictive inference for travel time on transportation networks
Travel time is essential for making travel decisions in real-world transportation networks. Understanding its distribution can resolve many … (see more)fundamental problems in transportation. Empirically, single-edge travel-time is well studied, but how to aggregate such information over many edges to arrive at the distribution of travel time over a route is still daunting. A range of statistical tools have been developed for network analysis; tools to study statistical behaviors of processes on dynamical networks are still lacking. This paper develops a novel statistical perspective to specific type of mixing ergodic processes (travel time), that mimic the behavior of travel time on real-world networks. Under general conditions on the single-edge speed (resistance) distribution, we show that travel time, normalized by distance, follows a Gaussian distribution with universal mean and variance parameters. We propose efficient inference methods for such parameters, and consequently asymptotic universal confidence and prediction intervals of travel time. We further develop path(route)-specific parameters that enable tighter Gaussian-based prediction intervals. We illustrate our methods with a real-world case study using mobile GPS data, where we show that the route-specific and universal intervals both achieve the 95\% theoretical coverage levels. Moreover, the route-specific prediction intervals result in tighter bounds that outperform competing models.
Prediction intervals for travel time on transportation networks
Estimating travel-time is essential for making travel decisions in transportation networks. Empirically, single road-segment travel-time is … (see more)well studied, but how to aggregate such information over many edges to arrive at the distribution of travel time over a route is still theoretically challenging. Understanding travel-time distribution can help resolve many fundamental problems in transportation, quantifying travel uncertainty as an example. We develop a novel statistical perspective to specific types of dynamical processes that mimic the behavior of travel time on real-world networks. We show that, under general conditions, travel-time normalized by distance, follows a Gaussian distribution with route-invariant (universal) location and scale parameters. We develop efficient inference methods for such parameters, with which we propose asymptotic universal confidence and prediction intervals of travel time. We further develop our theory to include road-segment level information to construct route-specific location and scale parameter sequences that produce tighter route-specific Gaussian-based prediction intervals. We illustrate our methods with a real-world case study using precollected mobile GPS data, where we show that the route-specific and route-invariant intervals both achieve the 95\% theoretical coverage levels, where the former result in tighter bounds that also outperform competing models.