Mila organise son premier hackathon en informatique quantique le 21 novembre. Une journée unique pour explorer le prototypage quantique et l’IA, collaborer sur les plateformes de Quandela et IBM, et apprendre, échanger et réseauter dans un environnement stimulant au cœur de l’écosystème québécois en IA et en quantique.
Une nouvelle initiative pour renforcer les liens entre la communauté de recherche, les partenaires et les expert·e·s en IA à travers le Québec et le Canada, grâce à des rencontres et événements en présentiel axés sur l’adoption de l’IA dans l’industrie.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Lena Simine
Alumni
Publications
Path-filtering in path-integral simulations of open quantum systems using GFlowNets
Amorphous molecular assemblies appear in a vast array of systems: from living cells to chemical plants and from everyday items to new device… (voir plus)s. The absence of long-range order in amorphous materials implies that precise knowledge of their underlying structures throughout is needed to rationalize and control their properties at the mesoscale. Standard computational simulations suffer from exponentially unfavorable scaling of the required compute with system size. We present a method based on deep learning that leverages the finite range of structural correlations for an autoregressive generation of disordered molecular aggregates up to arbitrary size from small-scale computational or experimental samples. We benchmark performance on self-assembled nanoparticle aggregates and proceed to simulate monolayer amorphous carbon with atomistic resolution. This method bridges the gap between the nanoscale and mesoscale simulations of amorphous molecular systems.