La conférence À l’avant-garde des politiques de l’IA : vers des solutions basées sur les faits réunit des chercheur·euse·s, des décideur·euse·s publics, des représentant·e·s gouvernementaux et des expert·e·s de l’industrie afin d’aborder les enjeux et opportunités les plus critiques à l’intersection de l’IA et des politiques publiques.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Lecteur Multimédia
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Learning the causal structure of observable variables is a central focus for scientific discovery. Bayesian causal discovery methods tackle … (voir plus)this problem by learning a posterior over the set of admissible graphs that are equally likely given our priors and observations. Existing methods primarily consider observations from static systems and assume the underlying causal structure takes the form of a directed acyclic graph (DAG). In settings with dynamic feedback mechanisms that regulate the trajectories of individual variables, this acyclicity assumption fails unless we account for time. We treat causal discovery in the unrolled causal graph as a problem of sparse identification of a dynamical system. This imposes a natural temporal causal order between variables and captures cyclic feedback loops through time. Under this lens, we propose a new framework for Bayesian causal discovery for dynamical systems and present a novel generative flow network architecture (Dyn-GFN) tailored for this task. Dyn-GFN imposes an edge-wise sparse prior to sequentially build a k -sparse causal graph. Through evaluation on temporal data, our results show that the posterior learned with Dyn-GFN yields improved Bayes coverage of admissible causal structures relative to state of the art Bayesian causal discovery methods.