Mila organise son premier hackathon en informatique quantique le 21 novembre. Une journée unique pour explorer le prototypage quantique et l’IA, collaborer sur les plateformes de Quandela et IBM, et apprendre, échanger et réseauter dans un environnement stimulant au cœur de l’écosystème québécois en IA et en quantique.
Une nouvelle initiative pour renforcer les liens entre la communauté de recherche, les partenaires et les expert·e·s en IA à travers le Québec et le Canada, grâce à des rencontres et événements en présentiel axés sur l’adoption de l’IA dans l’industrie.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Junyoung Chung
Alumni
Publications
Dynamic Frame Skipping for Fast Speech Recognition in Recurrent Neural Network Based Acoustic Models
A recurrent neural network is a powerful tool for modeling sequential data such as text and speech. While recurrent neural networks have ach… (voir plus)ieved record-breaking results in speech recognition, one remaining challenge is their slow processing speed. The main cause comes from the nature of recurrent neural networks that read only one frame at each time step. Therefore, reducing the number of reads is an effective approach to reducing processing time. In this paper, we propose a novel recurrent neural network architecture called Skip-RNN, which dynamically skips speech frames that are less important. The Skip-RNN consists of an acoustic model network and skip-policy network that are jointly trained to classify speech frames and determine how many frames to skip. We evaluate our proposed approach on the Wall Street Journal corpus and show that it can accelerate acoustic model computation by up to 2.4 times without any noticeable degradation in transcription accuracy.
2018-04-15
2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (publié)