Mila is hosting its first quantum computing hackathon on November 21, a unique day to explore quantum and AI prototyping, collaborate on Quandela and IBM platforms, and learn, share, and network in a stimulating environment at the heart of Quebec’s AI and quantum ecosystem.
This new initiative aims to strengthen connections between Mila’s research community, its partners, and AI experts across Quebec and Canada through in-person meetings and events focused on AI adoption in industry.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Junyoung Chung
Alumni
Publications
Dynamic Frame Skipping for Fast Speech Recognition in Recurrent Neural Network Based Acoustic Models
A recurrent neural network is a powerful tool for modeling sequential data such as text and speech. While recurrent neural networks have ach… (see more)ieved record-breaking results in speech recognition, one remaining challenge is their slow processing speed. The main cause comes from the nature of recurrent neural networks that read only one frame at each time step. Therefore, reducing the number of reads is an effective approach to reducing processing time. In this paper, we propose a novel recurrent neural network architecture called Skip-RNN, which dynamically skips speech frames that are less important. The Skip-RNN consists of an acoustic model network and skip-policy network that are jointly trained to classify speech frames and determine how many frames to skip. We evaluate our proposed approach on the Wall Street Journal corpus and show that it can accelerate acoustic model computation by up to 2.4 times without any noticeable degradation in transcription accuracy.
2018-04-15
2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (published)