Portrait de Geoff Gordon

Geoff Gordon

Membre affilié
Professeur, Carnegie Mellon University, Département de l'apprentissage automatique
Sujets de recherche
Apprentissage par renforcement
Optimisation
Raisonnement

Biographie

Geoffrey Gordon est professeur au Département d'apprentissage automatique de l'Université Carnegie Mellon, où il a également occupé les postes de directeur de département par intérim et de directeur de département associé à l'éducation.

Ses recherches ont porté sur les systèmes d’intelligence artificielle capables de penser à long terme, notamment afin de réfléchir à l’avance pour résoudre un problème, de planifier une séquence d’actions ou de déduire des propriétés invisibles à partir d’observations. Plus particulièrement, il explore la façon de combiner l'apprentissage automatique avec ces tâches de réflexion à long terme.

Geoffrey Gordon a obtenu un baccalauréat en informatique de l’Université Cornell en 1991 et un doctorat en informatique de l’Université Carnegie Mellon en 1999. Ses intérêts de recherche comprennent l’intelligence artificielle, l’apprentissage statistique, les données pédagogiques, la théorie des jeux, les systèmes multirobots et les domaines à somme générale. Auparavant, il a été professeur invité au Département de science informatique de l’Université Stanford et scientifique principal à Burning Glass Technologies, à San Diego.

Publications

Meta-Analysis with Untrusted Data
Shiva Kaul
Meta-analyses are usually conducted on small amounts of “trusted” data, ideally from randomized, controlled trials. Excluding untrusted … (voir plus)(observational) data — such as medical records and related scientific literature — avoids potential confounding and ensures unbiased conclusions. Unfortunately, this exclusion can reduce predictive accuracy to the point of clinical irrelevance, especially when trials are heterogeneous. This paper shows how untrusted data can be safely incorporated into meta-analysis, improving predictions without sacrificing rigor or introducing unproven assumptions. Our approach, called conformal meta-analysis, consists of (1) learning a (potentially flawed) prior distribution from the untrusted data, (2) using the prior and trusted data to derive a simple, fully-conformal prediction interval for the observed trial effect, and (3) analytically extracting an interval for the true (unobserved) effect. In multiple experiments on healthcare datasets, our algorithms deliver tighter, sounder intervals than traditional ones. This paper conceptually realigns meta-analysis as a foundation for evidence-based medicine, embracing heterogeneity and untrusted data for more nuanced, precise predictions.
When is Transfer Learning Possible?
My Phan
Kianté Brantley
Stephanie Milani
Soroush Mehri
Gokul Swamy
A Reduction from Reinforcement Learning to No-Regret Online Learning
Ching-An Cheng
Remi Tachet des Combes
Byron Boots
We present a reduction from reinforcement learning (RL) to no-regret online learning based on the saddle-point formulation of RL, by which "… (voir plus)any" online algorithm with sublinear regret can generate policies with provable performance guarantees. This new perspective decouples the RL problem into two parts: regret minimization and function approximation. The first part admits a standard online-learning analysis, and the second part can be quantified independently of the learning algorithm. Therefore, the proposed reduction can be used as a tool to systematically design new RL algorithms. We demonstrate this idea by devising a simple RL algorithm based on mirror descent and the generative-model oracle. For any
Expressiveness and Learning of Hidden Quantum Markov Models
Sandesh M. Adhikary
Siddarth Srinivasan
Byron Boots
Extending classical probabilistic reasoning using the quantum mechanical view of probability has been of recent interest, particularly in th… (voir plus)e development of hidden quantum Markov models (HQMMs) to model stochastic processes. However, there has been little progress in characterizing the expressiveness of such models and learning them from data. We tackle these problems by showing that HQMMs are a special subclass of the general class of observable operator models (OOMs) that do not suffer from the \emph{negative probability problem} by design. We also provide a feasible retraction-based learning algorithm for HQMMs using constrained gradient descent on the Stiefel manifold of model parameters. We demonstrate that this approach is faster and scales to larger models than previous learning algorithms.
Expressiveness and Learning of Hidden Quantum Markov Models
Sandesh M. Adhikary
Siddarth Srinivasan
Byron Boots
Extending classical probabilistic reasoning using the quantum mechanical view of probability has been of recent interest, particularly in th… (voir plus)e development of hidden quantum Markov models (HQMMs) to model stochastic processes. However, there has been little progress in characterizing the expressiveness of such models and learning them from data. We tackle these problems by showing that HQMMs are a special subclass of the general class of observable operator models (OOMs) that do not suffer from the \emph{negative probability problem} by design. We also provide a feasible retraction-based learning algorithm for HQMMs using constrained gradient descent on the Stiefel manifold of model parameters. We demonstrate that this approach is faster and scales to larger models than previous learning algorithms.
A Reduction from Reinforcement Learning to No-Regret Online Learning
Ching-An Cheng
Remi Tachet des Combes
Byron Boots
We present a reduction from reinforcement learning (RL) to no-regret online learning based on the saddle-point formulation of RL, by which "… (voir plus)any" online algorithm with sublinear regret can generate policies with provable performance guarantees. This new perspective decouples the RL problem into two parts: regret minimization and function approximation. The first part admits a standard online-learning analysis, and the second part can be quantified independently of the learning algorithm. Therefore, the proposed reduction can be used as a tool to systematically design new RL algorithms. We demonstrate this idea by devising a simple RL algorithm based on mirror descent and the generative-model oracle. For any
An Empirical Study of Example Forgetting during Deep Neural Network Learning
Mariya Toneva*
Remi Tachet des Combes
Adam Trischler
Inspired by the phenomenon of catastrophic forgetting, we investigate the learning dynamics of neural networks as they train on single class… (voir plus)ification tasks. Our goal is to understand whether a related phenomenon occurs when data does not undergo a clear distributional shift. We define a “forgetting event” to have occurred when an individual training example transitions from being classified correctly to incorrectly over the course of learning. Across several benchmark data sets, we find that: (i) certain examples are forgotten with high frequency, and some not at all; (ii) a data set’s (un)forgettable examples generalize across neural architectures; and (iii) based on forgetting dynamics, a significant fraction of examples can be omitted from the training data set while still maintaining state-of-the-art generalization performance.