Portrait de Gael Varoquaux n'est pas disponible

Gael Varoquaux

Alumni

Publications

Advancing science- and evidence-based AI policy.
Rishi Bommasani
Sanjeev Arora
Jennifer Chayes
Yejin Choi
Mariano-Florentino Cuéllar
Li Fei-Fei
Daniel E. Ho
Dan Jurafsky
Sanmi Koyejo
Hima Lakkaraju
Arvind Narayanan
Alondra Nelson
Emma Pierson
Scott Singer
Suresh Venkatasubramanian
Ion Stoica
Percy Liang
Dawn Song
Advancing Science- and Evidence-based AI Policy
Rishi Bommasani
Sanjeev Arora
Jennifer Chayes
Yejin Choi
Mariano-Florentino Cuéllar
Li Fei-Fei
Daniel E. Ho
Daniel Jurafsky
Sanmi Koyejo
Hima Lakkaraju
Arvind Narayanan
Alondra Nelson
Emma Pierson
Scott Singer
Suresh Venkatasubramanian
Ion Stoica
Percy Liang
Dawn Song
Policy must be informed by, but also facilitate the generation of, scientific evidence.
Advancing science- and evidence-based AI policy.
Rishi Bommasani
Sanjeev Arora
Jennifer Chayes
Yejin Choi
Mariano-Florentino Cuéllar
Li Fei-Fei
Daniel E. Ho
Dan Jurafsky
Sanmi Koyejo
Hima Lakkaraju
Arvind Narayanan
Alondra Nelson
Emma Pierson
Scott R. Singer
Suresh Venkatasubramanian
Ion Stoica
Percy Liang
Dawn Song
Policy must be informed by, but also facilitate the generation of, scientific evidence.
Individual Brain Charting dataset extension, third release for movie watching and retinotopy data
Ana Lúısa Pinho
Hugo Richard
Ana Fernanda Ponce
Michael Eickenberg
Alexis Amadon
Isabelle Denghien
Juan Jesús Torre
Swetha Shankar
Himanshu Aggarwal
Alexis Thual
Thomas Chapalain
Chantal Ginisty
Séverine Becuwe-Desmidt
Séverine Roger
Yann Lecomte
Valérie Berland
Laurence Laurier
Véronique Joly-Testault
Gaëlle Médiouni-Cloarec … (voir 6 de plus)
Christine Doublé
Bernadette Martins
Stanislas Dehaene
Lucie Hertz-Pannier
Bertrand Thirion
Metrics reloaded: Pitfalls and recommendations for image analysis validation
Lena Maier-Hein
Annika Reinke
Evangelia Christodoulou
Ben Glocker
PATRICK GODAU
Fabian Isensee
Jens Kleesiek
Michal Kozubek
Mauricio Reyes
MICHAEL A. RIEGLER
Manuel Wiesenfarth
Michael Baumgartner
Matthias Eisenmann
DOREEN HECKMANN-NÖTZEL
A. EMRE KAVUR
TIM RÄDSCH
Minu Dietlinde Tizabi
LAURA ACION
Michela Antonelli
Spyridon Bakas
Peter Bankhead
Allison Benis
M. Jorge Cardoso
Veronika Cheplygina
BETH A. CIMINI
Gary S. Collins
Keyvan Farahani
Bram van Ginneken
Daniel A. Hashimoto
Michael M. Hoffman
Merel Huisman
Pierre Jannin
CHARLES E. KAHN
ALEXANDROS KARARGYRIS
Alan Karthikesalingam
H. Kenngott
Annette Kopp-Schneider
Anna Kreshuk
Tahsin Kurc
Bennett Landman
GEERT LITJENS
Amin Madani
Klaus Maier-Hein
Anne L. Martel
Peter Mattson
ERIK MEIJERING
Bjoern Menze
David Moher
KAREL G.M. MOONS
Henning Müller
Felix Nickel
Jens Petersen
NASIR RAJPOOT
Nicola Rieke
Julio Saez-Rodriguez
Clarisa S'anchez Guti'errez
SHRAVYA SHETTY
M. Smeden
Carole H. Sudre
Ronald M. Summers
Abdel Aziz Taha
Sotirios A. Tsaftaris
Ben Van Calster
PAUL F. JÄGER
Understanding metric-related pitfalls in image analysis validation
Annika Reinke
Minu Dietlinde Tizabi
Michael Baumgartner
Matthias Eisenmann
DOREEN HECKMANN-NÖTZEL
A. EMRE KAVUR
TIM RÄDSCH
Carole H. Sudre
LAURA ACION
Michela Antonelli
Spyridon Bakas
Allison Benis
Arriel Benis
Matthew Blaschko
FLORIAN BUETTNER
M. Jorge Cardoso
Veronika Cheplygina
JIANXU CHEN
Evangelia Christodoulou … (voir 59 de plus)
BETH A. CIMINI
Gary S. Collins
Keyvan Farahani
LUCIANA FERRER
Adrian Galdran
Bram van Ginneken
Ben Glocker
PATRICK GODAU
Robert Cary Haase
Daniel A. Hashimoto
Michael M. Hoffman
Merel Huisman
Fabian Isensee
Pierre Jannin
CHARLES E. KAHN
DAGMAR KAINMUELLER
BERNHARD KAINZ
ALEXANDROS KARARGYRIS
Alan Karthikesalingam
H. Kenngott
Jens Kleesiek
Florian Kofler
THIJS KOOI
Annette Kopp-Schneider
Michal Kozubek
Anna Kreshuk
Tahsin Kurc
BENNETT A. LANDMAN
GEERT LITJENS
Amin Madani
Klaus Maier-Hein
Anne L. Martel
Peter Mattson
ERIK MEIJERING
Bjoern Menze
KAREL G.M. MOONS
Henning Müller
Felix Nickel
Jens Petersen
SUSANNE M. RAFELSKI
NASIR RAJPOOT
Mauricio Reyes
MICHAEL A. RIEGLER
Nicola Rieke
Julio Saez-Rodriguez
Clara I. Sánchez
SHRAVYA SHETTY
M. Smeden
Ronald M. Summers
Abdel Aziz Taha
ALEKSEI TIULPIN
Sotirios A. Tsaftaris
Ben Van Calster
Manuel Wiesenfarth
ZIV R. YANIV
PAUL F. JÄGER
Lena Maier-Hein
The Past, Present, and Future of the Brain Imaging Data Structure (BIDS)
Russell A. Poldrack
Christopher J. Markiewicz
Stefan Appelhoff
Yoni K. Ashar
Tibor Auer
Sylvain Baillet
Shashank Bansal
Leandro Beltrachini
Christian G. Benar
C. Bénar
Giacomo Bertazzoli
Suyash Bhogawar
Ross W. Blair
Marta Bortoletto
Mathieu Boudreau
Teon L. Brooks
Vince D. Calhoun
Filippo Maria Castelli
Patricia Clement
Alexander L. Cohen … (voir 100 de plus)
Sasha D’Ambrosio
Gilles de Hollander
María de la Iglesia-Vayá
Alejandro de la Vega
Arnaud Delorme
Orrin Devinsky
Dejan Draschkow
Eugene Paul Duff
E. Duff
Elizabeth DuPre
Eric Earl
Oscar Esteban
Franklin W. Feingold
Guillaume Flandin
Anthony Galassi
Giuseppe Gallitto
Melanie Ganz
Rémi Gau
James Gholam
Sulagna Dia Ghosh
Satrajit S. Ghosh
Alessio Giacomel
Ashley G. Gillman
Padraig Gleeson
Alexandre Gramfort
Samuel Guay
Giacomo Guidali
Yaroslav O. Halchenko
Daniel A. Handwerker
Nell Hardcastle
Peer Herholz
Dora Hermes
Christopher J. Honey
C. Honey
Robert B. Innis
Horea-Ioan Ioanas
Andrew Jahn
Agâh Karakuzu
David B. Keator
Gregory Kiar
Balint Kincses
Angela R. Laird
Jonathan C. Lau
Alberto Lazari
Jon Haitz Legarreta
Adam Li
Xiangrui Li
Bradley C. Love
Hanzhang Lu
Eleonora Marcantoni
Camille Maumet
Giacomo Mazzamuto
Steven L. Meisler
Mark Mikkelsen
Henk Mutsaerts
Thomas E. Nichols
Aki Nikolaidis
Gustav Nilsonne
Guiomar Niso
Martin Norgaard
Thomas W. Okell
Robert Oostenveld
Eduard Ort
Patrick J. Park
Mateusz Pawlik
Cyril R. Pernet
Franco Pestilli
Jan Petr
Christophe Phillips
Jean-Baptiste Poline
Luca Pollonini
Pradeep R. Raamana
Pradeep Reddy Raamana
Petra Ritter
Gaia Rizzo
Kay A. Robbins
Alexander P. Rockhill
Christine Rogers
Ariel Rokem
Chris Rorden
Alexandre Routier
Jose Manuel Saborit-Torres
Taylor Salo
Michael Schirner
Robert E. Smith
Tamas Spisak
Julia Sprenger
Nicole C. Swann
Martin Szinte
Sylvain Takerkart
Bertrand Thirion
Adam G. Thomas
Sajjad Torabian
Bradley Voytek
Julius Welzel
Martin Wilson
Tal Yarkoni
Krzysztof J. Gorgolewski
Metrics Reloaded - A new recommendation framework for biomedical image analysis validation
Annika Reinke
Lena Maier-Hein
Evangelia Christodoulou
Ben Glocker
Patrick Scholz
Fabian Isensee
Jens Kleesiek
Michal Kozubek
Mauricio Reyes
Michael Alexander Riegler
Manuel Wiesenfarth
Michael Baumgartner
Matthias Eisenmann
DOREEN HECKMANN-NÖTZEL
Ali Emre Kavur
TIM RÄDSCH
Minu D. Tizabi
LAURA ACION
Michela Antonelli
Spyridon Bakas
Peter Bankhead
Arriel Benis
M. Jorge Cardoso
Veronika Cheplygina
Beth A Cimini
Gary S. Collins
Keyvan Farahani
Bram van Ginneken
Fred A Hamprecht
Daniel A. Hashimoto
Michael M. Hoffman
Merel Huisman
Pierre Jannin
Charles Kahn
ALEXANDROS KARARGYRIS
Alan Karthikesalingam
Hannes Kenngott
Annette Kopp-Schneider
Anna Kreshuk
Tahsin Kurc
Bennett Landman
GEERT LITJENS
Amin Madani
Klaus Maier-Hein
Anne Martel
Peter Mattson
ERIK MEIJERING
Bjoern Menze
David Moher
KAREL G.M. MOONS
Henning Müller
Felix Nickel
Jens Petersen
NASIR RAJPOOT
Nicola Rieke
Julio Saez-Rodriguez
Clara I. Sánchez
SHRAVYA SHETTY
Maarten van Smeden
Carole H. Sudre
Ronald M. Summers
Abdel A. Taha
Sotirios A. Tsaftaris
Ben Van Calster
Paul F Jaeger
Meaningful performance assessment of biomedical image analysis algorithms depends on objective and appropriate performance metrics. There ar… (voir plus)e major shortcomings in the current state of the art. Yet, so far limited attention has been paid to practical pitfalls associated when using particular metrics for image analysis tasks. Therefore, a number of international initiatives have collaborated to offer researchers with guidance and tools for selecting performance metrics in a problem-aware manner. In our proposed framework, the characteristics of the given biomedical problem are first captured in a problem fingerprint, which identifies properties related to domain interests, the target structure(s), the input datasets, and algorithm output. A problem category-specific mapping is applied in the second step to match fingerprints to metrics that reflect domain requirements. Based on input from experts from more than 60 institutions worldwide, we believe our metric recommendation framework to be useful to the MIDL community and to enhance the quality of biomedical image analysis algorithm validation.
Population modeling with machine learning can enhance measures of mental health
Kamalaker Dadi
Josselin Houenou
Bertrand Thirion
Denis-Alexander Engemann
Background Biological aging is revealed by physical measures, e.g., DNA probes or brain scans. Instead, individual differences in mental fun… (voir plus)ction are explained by psychological constructs, e.g., intelligence or neuroticism. These constructs are typically assessed by tailored neuropsychological tests that build on expert judgement and require careful interpretation. Could machine learning on large samples from the general population be used to build proxy measures of these constructs that do not require human intervention? Results Here, we built proxy measures by applying machine learning on multimodal MR images and rich sociodemographic information from the largest biomedical cohort to date: the UK Biobank. Objective model comparisons revealed that all proxies captured the target constructs and were as useful, and sometimes more useful than the original measures for characterizing real-world health behavior (sleep, exercise, tobacco, alcohol consumption). We observed this complementarity of proxy measures and original measures when modeling from brain signals or sociodemographic data, capturing multiple health-related constructs. Conclusions Population modeling with machine learning can derive measures of mental health from brain signals and questionnaire data, which may complement or even substitute for psychometric assessments in clinical populations. Key Points We applied machine learning on more than 10.000 individuals from the general population to define empirical approximations of health-related psychological measures that do not require human judgment. We found that machine-learning enriched the given psychological measures via approximation from brain and sociodemographic data: Resulting proxy measures related as well or better to real-world health behavior than the original measures. Model comparisons showed that sociodemographic information contributed most to characterizing psychological traits beyond aging.
Brainhack: Developing a culture of open, inclusive, community-driven neuroscience
Rémi Gau
Stephanie Noble
Katja Heuer
Katherine L. Bottenhorn
Isil P. Bilgin
Yu-Fang Yang
Julia M. Huntenburg
Johanna M.M. Bayer
Richard A.I. Bethlehem
Shawn A. Rhoads
Christoph Vogelbacher
V. Borghesani
Elizabeth Levitis
Hao-Ting Wang
Sofie Van Den Bossche
Xenia Kobeleva
Jon Haitz Legarreta
Samuel Guay
Selim Melvin Atay
Dorien C. Huijser
Malin S. Sandström
Peer Herholz
Samuel A. Nastase
AmanPreet Badhwar
Simon Schwab
Stefano Moia
Michael Dayan
Yasmine Bassil
Paula P. Brooks
Matteo Mancini
James M. Shine
David O’Connor
Xihe Xie
Davide Poggiali
Patrick Friedrich
Anibal S. Heinsfeld
Lydia Riedl
Roberto Toro
César Caballero-Gaudes
Anders Eklund
Kelly G. Garner
Christopher R. Nolan
Damion V. Demeter
Fernando A. Barrios
Junaid S. Merchant
Elizabeth A. McDevitt
Robert Oostenveld
R. Cameron Craddock
Ariel Rokem
Andrew Doyle
Satrajit S. Ghosh
Aki Nikolaidis
Olivia W. Stanley
Eneko Uruñuela
Nasim Anousheh
Aurina Arnatkeviciute
Guillaume Auzias
Dipankar Bachar
Elise Bannier
Ruggero Basanisi
Arshitha Basavaraj
Marco Bedini
R. Austin Benn
Kathryn Berluti
Steffen Bollmann
Saskia Bollmann
Claire Bradley
Jesse Brown
Augusto Buchweitz
Patrick Callahan
Micaela Y. Chan
Bramsh Q. Chandio
Theresa Cheng
Sidhant Chopra
Ai Wern Chung
Thomas G. Close
Etienne Combrisson
Giorgia Cona
R. Todd Constable
Claire Cury
Kamalaker Dadi
Pablo F. Damasceno
Samir Das
Fabrizio De Vico Fallani
Krista DeStasio
Erin W. Dickie
Lena Dorfschmidt
Eugene P. Duff
Elizabeth DuPre
Sarah Dziura
Nathalia B. Esper
Oscar Esteban
Shreyas Fadnavis
Guillaume Flandin
Jessica E. Flannery
John Flournoy
Stephanie J. Forkel
Alexandre R. Franco
Saampras Ganesan
Siyuan Gao
José C. García Alanis
Eleftherios Garyfallidis
Tristan Glatard
Enrico Glerean
Javier Gonzalez-Castillo
Cassandra D. Gould van Praag
Abigail S. Greene
Geetika Gupta
Catherine Alice Hahn
Yaroslav O. Halchenko
Daniel Handwerker
Thomas S. Hartmann
Valérie Hayot-Sasson
Stephan Heunis
Felix Hoffstaedter
Daniela M. Hohmann
Corey Horien
Horea-Ioan Ioanas
Alexandru Iordan
Chao Jiang
Michael Joseph
Jason Kai
Agâh Karakuzu
David N. Kennedy
Anisha Keshavan
Ali R. Khan
Gregory Kiar
P. Christiaan Klink
Vincent Koppelmans
Serge Koudoro
Angela R. Laird
Georg Langs
Marissa Laws
Roxane Licandro
Sook-Lei Liew
Tomislav Lipic
Krisanne Litinas
Daniel J. Lurie
Désirée Lussier
Christopher R. Madan
Lea-Theresa Mais
Sina Mansour L
J.P. Manzano-Patron
Dimitra Maoutsa
Matheus Marcon
Daniel S. Margulies
Giorgio Marinato
Daniele Marinazzo
Christopher J. Markiewicz
Camille Maumet
Felipe Meneguzzi
David Meunier
Michael P. Milham
Kathryn L. Mills
Davide Momi
Clara A. Moreau
Aysha Motala
Iska Moxon-Emre
Thomas E. Nichols
Dylan M. Nielson
Gustav Nilsonne
Lisa Novello
Caroline O’Brien
Emily Olafson
Lindsay D. Oliver
John A. Onofrey
Edwina R. Orchard
Kendra Oudyk
Patrick J. Park
Mahboobeh Parsapoor
Lorenzo Pasquini
Scott Peltier
Cyril R. Pernet
Rudolph Pienaar
Pedro Pinheiro-Chagas
Jean-Baptiste Poline
Anqi Qiu
Tiago Quendera
Laura C. Rice
Joscelin Rocha-Hidalgo
Saige Rutherford
Mathias Scharinger
Dustin Scheinost
Deena Shariq
Thomas B. Shaw
Viviana Siless
Molly Simmonite
Nikoloz Sirmpilatze
Hayli Spence
Julia Sprenger
Andrija Stajduhar
Martin Szinte
Sylvain Takerkart
Angela Tam
Link Tejavibulya
Michel Thiebaut de Schotten
Ina Thome
Laura Tomaz da Silva
Nicolas Traut
Lucina Q. Uddin
Antonino Vallesi
John W. VanMeter
Nandita Vijayakumar
Matteo Visconti di Oleggio Castello
Jakub Vohryzek
Jakša Vukojević
Kirstie Jane Whitaker
Lucy Whitmore
Steve Wideman
Suzanne T. Witt
Hua Xie
Ting Xu
Chao-Gan Yan
Fang-Cheng Yeh
B.T. Thomas Yeo
Xi-Nian Zuo
Prediction, Not Association, Paves the Road to Precision Medicine
Ewout W. Steyerberg
Accounting for Variance in Machine Learning Benchmarks
Strong empirical evidence that one machine-learning algorithm A outperforms another one B ideally calls for multiple trials optimizing the l… (voir plus)earning pipeline over sources of variation such as data sampling, data augmentation, parameter initialization, and hyperparameters choices. This is prohibitively expensive, and corners are cut to reach conclusions. We model the whole benchmarking process, revealing that variance due to data sampling, parameter initialization and hyperparameter choice impact markedly the results. We analyze the predominant comparison methods used today in the light of this variance. We show a counter-intuitive result that adding more sources of variation to an imperfect estimator approaches better the ideal estimator at a 51 times reduction in compute cost. Building on these results, we study the error rate of detecting improvements, on five different deep-learning tasks/architectures. This study leads us to propose recommendations for performance comparisons.