Mila organise son premier hackathon en informatique quantique le 21 novembre. Une journée unique pour explorer le prototypage quantique et l’IA, collaborer sur les plateformes de Quandela et IBM, et apprendre, échanger et réseauter dans un environnement stimulant au cœur de l’écosystème québécois en IA et en quantique.
Une nouvelle initiative pour renforcer les liens entre la communauté de recherche, les partenaires et les expert·e·s en IA à travers le Québec et le Canada, grâce à des rencontres et événements en présentiel axés sur l’adoption de l’IA dans l’industrie.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Faizy Ahsan
Alumni
Publications
PhyloPGM: boosting regulatory function prediction accuracy using evolutionary information
Abstract Motivation The computational prediction of regulatory function associated with a genomic sequence is of utter importance in -omics … (voir plus)study, which facilitates our understanding of the underlying mechanisms underpinning the vast gene regulatory network. Prominent examples in this area include the binding prediction of transcription factors in DNA regulatory regions, and predicting RNA–protein interaction in the context of post-transcriptional gene expression. However, existing computational methods have suffered from high false-positive rates and have seldom used any evolutionary information, despite the vast amount of available orthologous data across multitudes of extant and ancestral genomes, which readily present an opportunity to improve the accuracy of existing computational methods. Results In this study, we present a novel probabilistic approach called PhyloPGM that leverages previously trained TFBS or RNA–RBP binding predictors by aggregating their predictions from various orthologous regions, in order to boost the overall prediction accuracy on human sequences. Throughout our experiments, PhyloPGM has shown significant improvement over baselines such as the sequence-based RNA–RBP binding predictor RNATracker and the sequence-based TFBS predictor that is known as FactorNet. PhyloPGM is simple in principle, easy to implement and yet, yields impressive results. Availability and implementation The PhyloPGM package is available at https://github.com/BlanchetteLab/PhyloPGM Supplementary information Supplementary data are available at Bioinformatics online.
The computational prediction of transcription factor binding sites remains a challenging problems in bioinformatics, despite significant met… (voir plus)hodological developments from the field of machine learning. Such computational models are essential to help interpret the non-coding portion of human genomes, and to learn more about the regulatory mechanisms controlling gene expression. In parallel, massive genome sequencing efforts have produced assembled genomes for hundred of vertebrate species, but this data is underused. We present PhyloReg, a new semi-supervised learning approach that can be used for a wide variety of sequence-to-function prediction problems, and that takes advantage of hundreds of millions of years of evolution to regularize predictors and improve accuracy. We demonstrate that PhyloReg can be used to better train a previously proposed deep learning model of transcription factor binding. Simulation studies further help delineate the benefits of the a pproach. G ains in prediction accuracy are obtained over a broad set of transcription factors and cell types.
2020-12-16
2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (publié)