Rejoignez-nous le 19 novembre pour la troisième édition du concours de vulgarisation scientifique de Mila, où les étudiant·e·s présenteront leurs recherches complexes en trois minutes devant un jury.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Lecteur Multimédia
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Clement Jumel
Alumni
Publications
TESA: A Task in Entity Semantic Aggregation for Abstractive Summarization
Human-written texts contain frequent generalizations and semantic aggregation of content. In a document, they may refer to a pair of named e… (voir plus)ntities such as ‘London’ and ‘Paris’ with different expressions: “the major cities”, “the capital cities” and “two European cities”. Yet generation, especially, abstractive summarization systems have so far focused heavily on paraphrasing and simplifying the source content, to the exclusion of such semantic abstraction capabilities. In this paper, we present a new dataset and task aimed at the semantic aggregation of entities. TESA contains a dataset of 5.3K crowd-sourced entity aggregations of Person, Organization, and Location named entities. The aggregations are document-appropriate, meaning that they are produced by annotators to match the situational context of a given news article from the New York Times. We then build baseline models for generating aggregations given a tuple of entities and document context. We finetune on TESA an encoder-decoder language model and compare it with simpler classification methods based on linguistically informed features. Our quantitative and qualitative evaluations show reasonable performance in making a choice from a given list of expressions, but free-form expressions are understandably harder to generate and evaluate.
2020-11-01
Conference on Empirical Methods in Natural Language Processing (publié)