Portrait de Benjamin Fung

Benjamin Fung

Membre académique associé
Professeur agrégé, McGill University, École des sciences de l'information
Sujets de recherche
Exploration des données

Biographie

Benjamin Fung est titulaire d'une chaire de recherche du Canada en exploration de données pour la cybersécurité, professeur agrégé à l’École des sciences de l’information et membre agrégé de l’École d’informatique de l'Université McGill, rédacteur adjoint de IEEE Transactions of Knowledge and Data Engineering et rédacteur adjoint de Elsevier Sustainable Cities and Society (SCS). Il a obtenu un doctorat en informatique de l'Université Simon Fraser en 2007. Il a à son actif plus de 150 publications revues par un comité de lecture, et plus de 14 000 citations (h-index 57) qui couvrent les domaines de l'exploration de données, de l'apprentissage automatique, de la protection de la vie privée, de la cybersécurité et du génie du bâtiment. Ses travaux d'exploration de données dans les enquêtes criminelles et l'analyse de la paternité d’une œuvre ont été recensés par les médias du monde entier.

Publications

Learning Inter-Modal Correspondence and Phenotypes From Multi-Modal Electronic Health Records
Kejing Yin
William K. Cheung
Jonathan Poon
Non-negative tensor factorization has been shown a practical solution to automatically discover phenotypes from the electronic health record… (voir plus)s (EHR) with minimal human supervision. Such methods generally require an input tensor describing the inter-modal interactions to be pre-established; however, the correspondence between different modalities (e.g., correspondence between medications and diagnoses) can often be missing in practice. Although heuristic methods can be applied to estimate them, they inevitably introduce errors, and leads to sub-optimal phenotype quality. This is particularly important for patients with complex health conditions (e.g., in critical care) as multiple diagnoses and medications are simultaneously present in the records. To alleviate this problem and discover phenotypes from EHR with unobserved inter-modal correspondence, we propose the collective hidden interaction tensor factorization (cHITF) to infer the correspondence between multiple modalities jointly with the phenotype discovery. We assume that the observed matrix for each modality is marginalization of the unobserved inter-modal correspondence, which are reconstructed by maximizing the likelihood of the observed matrices. Extensive experiments conducted on the real-world MIMIC-III dataset demonstrate that cHITF effectively infers clinically meaningful inter-modal correspondence, discovers phenotypes that are more clinically relevant and diverse, and achieves better predictive performance compared with a number of state-of-the-art computational phenotyping models.
Trends and Applications in Knowledge Discovery and Data Mining
Lida Rashidi
Can Wang
Trends and Applications in Knowledge Discovery and Data Mining
Lida Rashidi
Can Wang