Portrait de Anirudh Goyal n'est pas disponible

Anirudh Goyal

Alumni

Publications

Low Compute Unlearning via Sparse Representations
Ashish Malik
Michael Curtis Mozer
Sanjeev Arora
Machine unlearning, which involves erasing knowledge about a \emph{forget set} from a trained model, can prove to be costly and infeasible … (voir plus)using existing techniques. We propose a low-compute unlearning technique based on a discrete representational bottleneck. We show that the proposed technique efficiently unlearns the forget set and incurs negligible damage to the model's performance on the rest of the dataset. We evaluate the proposed technique on the problem of class unlearning using four datasets: CIFAR-10, CIFAR-100, LACUNA-100 and ImageNet-1k. We compare the proposed technique to SCRUB, a state-of-the-art approach which uses knowledge distillation for unlearning. Across all four datasets, the proposed technique performs as well as, if not better than SCRUB while incurring almost no computational cost.
Jailbreak Distillation: Renewable Safety Benchmarking
Jingyu Zhang
Ahmed Elgohary
Xiawei Wang
A S M Iftekhar
Ahmed Magooda
Benjamin Van Durme
Daniel Khashabi
Kyle Jackson
JBDistill Benchmark JBDistill Benchmark
Marah Ihab Abdin
Jyoti Aneja
Harkirat Singh Behl
Sébastien Bubeck
Ronen Eldan
S. Gunasekar
Michael Harrison
Russell J. Hewett
Mojan Javaheripi
Piero Kauffmann
James R. Lee … (voir 484 de plus)
Yin Tat Lee
Yuanzhi Li
Weishung Liu
C. C. T. Mendes
Anh Nguyen
Eric Price
Gustavo de Rosa
Olli Saarikivi
Adil Salim
Tim Beyer
Simon Geisler
Stephan Günnemann. 2025
Blake Bullwinkel
Amanda Minnich
Shiven Chawla
Gary Lopez
Martin Pouliot
Whitney Maxwell
Patrick Chao
Edoardo Debenedetti
Alexander Robey
Maksym Andriushchenko
Francesco Croce
Vikash Sehwag
Edgar Dobriban
Nicolas Flammarion
George J. Pappas
Florian Tramèr
Hamed Hassani
Eric Wong
Jailbreakbench
Zora Che
Stephen Casper
Robert Kirk
Anirudh Satheesh
Stewart Slocum
Lev E McKinney
Rohit Gandikota
Aidan Ewart
Domenic Rosati
Zichu Wu
Zikui Cai
Daya Guo
Dejian Yang
Haowei Zhang
Jun-Mei Song
Ruoyu Zhang
Runxin Xu
Qihao Zhu
Shirong Ma
Peiyi Wang
Xiaoling Bi
Xiaokang Zhang
Xingkai Yu
Yu Wu
Z. F. Wu
Zhibin Gou
Zhihong Shao
Zhuoshu Li
Ziyi Gao
A. Liu
Bing Xue
Bingxuan Wang
Bo WU
Bei Feng
Chenggang Lu
Chenggang Zhao
Chengqi Deng
Chenyu Zhang
C. Ruan
Damai Dai
Deli Chen
Dong-Li Ji
Erhang Li
Fangyun Lin
Fucong Dai
Fuli Luo
Guangbo Hao
Guanting Chen
Guowei Li
Han Bao
Hanwei Xu
Haocheng Wang
Honghui Ding
Huajian Xin
Huazuo Gao
Hui Qu
Hui Li
Jianzhong Guo
Jiashi Li
Jiawei Wang
Jingchang Chen
Jingyang Yuan
Junjie Qiu
Junlong Li
J. Cai
J. Ni
Jian Liang
Jin Chen
Kai Dong
Kai Hu
Kaige Gao
Kang Guan
Kexin Huang
Kuai Yu
Lean Wang
Lecong Zhang
Liang Zhao
Litong Wang
Liyue Zhang
Lei Xu
Leyi Xia
Mingchuan Zhang
Minghua Zhang
Min Tang
Meng Li
Miaojun Wang
Mingming Li
Ning Tian
Panpan Huang
Meng Wang
Qiancheng Wang
Qinyu Chen
Qiushi Du
Ruiqi Ge
Ruisong Zhang
Ruizhe Pan
Runji Wang
R. J. Chen
Rong Jin
Ruyi Chen
Shanghao Lu
Shangyan Zhou
Shanhuang Chen
Shengfeng Ye
Shiyu Wang
Shuiping Yu
Shunfeng Zhou
Shuting Pan
S. S. Li
Shuang Zhou
Shao-Ping Wu
Tao Yun
Tian Pei
Tianyu Sun
T. Wang
Wangding Zeng
Wanjia Zhao
Wen Liu
Wenfeng Liang
Wenjun Gao
Wen-Xuan Yu
Wentao Zhang
Wei Xiao
Wei An
Xiaodong Liu
Xiaohan Wang
Xiaokang Chen
Xiaotao Nie
Xin Cheng
Jian Li
Xinfeng Xie
Xingchao Liu
Xinyu Yang
Xinyuan Li
Xuecheng Su
Xuheng Lin
Xiangyu Jin
Xi-Cheng Shen
Xiaosha Chen
Xiaowen Sun
Xiaoxi-ang Wang
Xinnan Song
Xinyi Zhou
Xianzu Wang
Xinxia Shan
Y. K. Li
Y. Q. Wang
Y. X. Wei
Yang Zhang
Yan-Hong Xu
Yao Zhao
Yaofeng Sun
Yaohui Wang
Yi Yu
Yichao Zhang
Yifan Shi
Yi Xiong
Ying He
Yishi Piao
Yisong Wang
Yi Chern Tan
Yiyang Ma
Yiyuan Liu
Yongqiang Guo
Yuan Ou
Yuduan Wang
Yue Gong
Yuheng Zou
Yuzi He
Yunfan Xiong
Yuxiang Luo
Yuxiang You
Yu-mei You
Yuxuan Liu
Yuyang Zhou
Y. X. Zhu
Yanping Huang
Yaohui Li
Yang Li
Yi Zheng
Yunxiang Ma
Ying Tang
Yukun Zha
Yuting Yan
Z. Z. Ren
Zehui Ren
Zhangli Sha
Zhe Fu
Zhean Xu
Zhenda Xie
Zhengyan Zhang
Zhewen Hao
Zhicheng Ma
Zhigang Yan
Zhiyu Wu
Zihui Gu
Zijia Zhu
Zijun Liu
Zi-An Li
Ziwei Xie
Ziyang Song
Deep Ganguli
Liane Lovitt
Jackson Kernion
Amanda Askell
Yuntao Bai
Saurav Kadavath
Benjamin Mann
Nicholas Schiefer
Kamal Ndousse
Andy Jones
Sam Bowman
Anna Chen
Tom Con-erly
Nova Dassarma
Dawn Drain
Nelson Elhage Sheer
Stanislav Fort
Zac Hatfield-Dodds
T. Henighan
Danny Hernandez
Tristan Hume
Josh Jacobson
Scott Johnston
Shauna Kravec
Catherine Olsson
Sam Ringer
Eli Tran-Johnson
Dario Amodei
Tom Brown
Nicholas Joseph
Sam McCandlish
Chris Olah
Jared Kaplan
Jack Clark. 2022. Red
Aaron Grattafiori
Abhimanyu Dubey
Abhinav Jauhri
Abhinav Pandey
Abhishek Kadian
Ahmad Al-Dahle
Aiesha Letman
Akhil Mathur
Alan Schel-ten
Alex Vaughan
Amy Yang
Angela Fan
A. Hartshorn
Aobo Yang
Archi Mitra
Archie Sravankumar
Artem Korenev
Arthur Hinsvark
Arun Rao
Aston Zhang
Aurelien Ro-driguez
Austen Gregerson
Ava Spataru
Baptiste Rozière
Bethany Biron
Binh Tang
Bobbie Chern
Charlotte Caucheteux
Chaya Nayak
Chloe Bi
Chris Marra
Chris McConnell
Christian Keller
Christophe Touret
Chunyang Wu
Corinne Wong
Cris-tian Cantón Ferrer
Cyrus Nikolaidis
Damien Al-lonsius
Daniel Song
Danielle Pintz
Danny Livshits
Danny Wyatt
David Esiobu
Dhruv Choudhary
Dhruv Mahajan 0001
Diego Garcia-Olano
Diego Perino
Dieuwke Hupkes
Egor Lakomkin
Ehab A. AlBadawy
Elina Lobanova
Emily Dinan
Eric Michael Smith
Filip Radenovic
Francisco Guzmán
Frank Zhang
Gabriele Synnaeve
Gabrielle Lee
Georgia Lewis
G. Thattai
Graeme Nail
Gregoire Mi-alon
Guan Pang
Guillem Cucurell
Hailey Nguyen
Han-nah Korevaar
Hu Xu
Hugo Touvron
Imanol Iliyan Zarov
Arrieta Ibarra
Is-abel Kloumann
Ishan Misra
Ivan Evtimov
Jack Zhang
Jade Copet
Jaewon Lee
Jan Geffert
Jana Vranes
Jason Park
Jay Mahadeokar
Jeet Shah
Jelmer van der Linde
Jennifer Billock
Jenny Hong
Jenya Lee
Jeremy Fu
J. Fu
Jianfeng Chi
Jianyu Huang
Jiawen Liu
Jie Wang
Jiecao Yu
Joanna Bitton
Joe Spisak
Jongsoo Park
Joseph Rocca
J. Johnstun
Joshua Saxe
Junteng Jia
Kalyan Vasuden Alwala
Karthik Prasad
Kartikeya Upasani
Kate Plawiak
Keqian Li
Kenneth Heafield
Kevin R. Stone
Khalid El-Arini
Krithika Iyer
Kshitiz Malik
Kuen-ley Chiu
Kunal Bhalla
Kushal Lakhotia
Lauren Rantala-Yeary
Laurens van der Maaten
Lawrence Chen
Liang Tan
Liz Jenkins
Louis Martin
Lovish Madaan
Lubo Malo
Lukas Blecher
Lukas Landzaat
Luke de Oliveira
Madeline Muzzi
Mahesh Pasupuleti
Mannat Singh
Manohar Paluri
Marcin Kardas
Maria Tsimpoukelli
Mathew Oldham
Mathieu Rita
Maya Pavlova
Melanie Kam-badur
Mike Lewis
Mitesh Min Si
Kumar Singh
Mona Hassan
Naman Goyal
Narjes Torabi
Niko-lay Bashlykov
Nikolay Bogoychev
Niladri S. Chatterji
Ning Zhang
Olivier Duchenne
Onur Çelebi
Patrick Alrassy
Petar Pengwei Li
Peter Weng
Prajjwal Bhargava
Pratik Dubal
Punit Praveen Krishnan
Singh Koura
Puxin Xu
Qing He
Qingxiao Dong
Ragavan Srinivasan
Raj Ganapathy
Ramon Calderer
Ricardo Silveira Cabral
Robert Stojnic
Roberta Raileanu
Rohan Maheswari
Rohit Girdhar
Rohit Patel
Ro-main Sauvestre
Ron-nie Polidoro
Roshan Sumbaly
Ross Taylor
Ruan Silva
Rui Hou
Rui Wang
S. Hosseini
Sa-hana Chennabasappa
Sanjay Singh
Sean Bell
Seo-hyun Sonia Kim
Sergey Edunov
Shaoliang Nie
Sharan Narang
Sheng Shen
Shengye Wan
Shruti Bhosale
Shun Zhang
Simon Van-denhende
Soumya Batra
Spencer Whitman
Sten Sootla
Stephane Collot
Suchin Gururangan
S. Borodinsky
Tamar Herman
Tara Fowler
Tarek Sheasha
Thomas Georgiou
Thomas Scialom
Tobias Speckbacher
Todor Mihaylov
Tong Xiao
Ujjwal Karn
Vedanuj Goswami
Vibhor Gupta
Vignesh Ramanathan
Viktor Kerkez
Vincent Gonguet
Vir-ginie Do
Vish Vogeti
Vitor Albiero
Vladan Petro-vic
Weiwei Chu
Wenhan Xiong
Wenyin Fu
On the Transfer of Object-Centric Representation Learning
Aniket Rajiv Didolkar
Andrii Zadaianchuk
Michael Curtis Mozer
Georg Martius
Maximilian Seitzer
The goal of object-centric representation learning is to decompose visual scenes into a structured representation that isolates the entities… (voir plus) into individual vectors. Recent successes have shown that object-centric representation learning can be scaled to real-world scenes by utilizing features from pre-trained foundation models like DINO. However, so far, these object-centric methods have mostly been applied in-distribution, with models trained and evaluated on the same dataset. This is in contrast to the underlying foundation models, which have been shown to be applicable to a wide range of data and tasks. Thus, in this work, we answer the question of whether current real-world capable object-centric methods exhibit similar levels of transferability by introducing a benchmark comprising seven different synthetic and real-world datasets. We analyze the factors influencing performance under transfer and find that training on diverse real-world images improves generalization to unseen scenarios. Furthermore, inspired by the success of task-specific fine-tuning in foundation models, we introduce a novel fine-tuning strategy to adapt pre-trained vision encoders for the task of object discovery. We find that the proposed approach results in state-of-the-art performance for unsupervised object discovery, exhibiting strong zero-shot transfer to unseen datasets.
On the Transfer of Object-Centric Representation Learning.
Aniket Rajiv Didolkar
Andrii Zadaianchuk
Michael Curtis Mozer
Georg Martius
Maximilian Seitzer
Object-Centric Temporal Consistency via Conditional Autoregressive Inductive Biases
Akihiro Nakano
Mircea Tudor Lică
Aniket Rajiv Didolkar
Masahiro Suzuki
Mengmi Zhang
Justin Dauwels
Yutaka Matsuo
AI-Assisted Generation of Difficult Math Questions
Dingli Yu
Kaifeng Lyu
Simon Park
Nan Rosemary Ke
Jiatong Yu
Yinghui He
Michael Curtis Mozer
James Lloyd McClelland
Sanjeev Arora
Current LLM training positions mathematical reasoning as a core capability. With publicly available sources fully tapped, there is unmet dem… (voir plus)and for diverse and challenging math questions. Relying solely on human experts is both time-consuming and costly, while LLM-generated questions often lack the requisite diversity and difficulty. We present a design framework that combines the strengths of LLMs with a human-in-the-loop approach to generate a diverse array of challenging math questions. We leverage LLM metacognition skills [Didolkar et al., 2024] of a strong LLM to extract core"skills"from existing math datasets. These skills serve as the basis for generating novel and difficult questions by prompting the LLM with random pairs of core skills. The use of two different skills within each question makes finding such questions an"out of distribution"task for both LLMs and humans. Our pipeline employs LLMs to iteratively generate and refine questions and solutions through multiturn prompting. Human annotators then verify and further refine the questions, with their efficiency enhanced via further LLM interactions. Applying this pipeline on skills extracted from the MATH dataset [Hendrycks et al., 2021] resulted in MATH
Metacognitive Capabilities of LLMs: An Exploration in Mathematical Problem Solving
Aniket Rajiv Didolkar
Nan Rosemary Ke
Siyuan Guo
Michal Valko
Timothy P Lillicrap
Danilo Jimenez Rezende
Michael Curtis Mozer
Sanjeev Arora
Zero-Shot Object-Centric Representation Learning
Aniket Rajiv Didolkar
Andrii Zadaianchuk
Michael Curtis Mozer
Georg Martius
Maximilian Seitzer
The goal of object-centric representation learning is to decompose visual scenes into a structured representation that isolates the entities… (voir plus). Recent successes have shown that object-centric representation learning can be scaled to real-world scenes by utilizing pre-trained self-supervised features. However, so far, object-centric methods have mostly been applied in-distribution, with models trained and evaluated on the same dataset. This is in contrast to the wider trend in machine learning towards general-purpose models directly applicable to unseen data and tasks. Thus, in this work, we study current object-centric methods through the lens of zero-shot generalization by introducing a benchmark comprising eight different synthetic and real-world datasets. We analyze the factors influencing zero-shot performance and find that training on diverse real-world images improves transferability to unseen scenarios. Furthermore, inspired by the success of task-specific fine-tuning in foundation models, we introduce a novel fine-tuning strategy to adapt pre-trained vision encoders for the task of object discovery. We find that the proposed approach results in state-of-the-art performance for unsupervised object discovery, exhibiting strong zero-shot transfer to unseen datasets.
Zero-Shot Object-Centric Representation Learning
Aniket Rajiv Didolkar
Andrii Zadaianchuk
Michael Curtis Mozer
Georg Martius
Maximilian Seitzer
The goal of object-centric representation learning is to decompose visual scenes into a structured representation that isolates the entities… (voir plus). Recent successes have shown that object-centric representation learning can be scaled to real-world scenes by utilizing pre-trained self-supervised features. However, so far, object-centric methods have mostly been applied in-distribution, with models trained and evaluated on the same dataset. This is in contrast to the wider trend in machine learning towards general-purpose models directly applicable to unseen data and tasks. Thus, in this work, we study current object-centric methods through the lens of zero-shot generalization by introducing a benchmark comprising eight different synthetic and real-world datasets. We analyze the factors influencing zero-shot performance and find that training on diverse real-world images improves transferability to unseen scenarios. Furthermore, inspired by the success of task-specific fine-tuning in foundation models, we introduce a novel fine-tuning strategy to adapt pre-trained vision encoders for the task of object discovery. We find that the proposed approach results in state-of-the-art performance for unsupervised object discovery, exhibiting strong zero-shot transfer to unseen datasets.
Zero-Shot Object-Centric Representation Learning
Aniket Rajiv Didolkar
Andrii Zadaianchuk
Michael Curtis Mozer
Georg Martius
Maximilian Seitzer
The goal of object-centric representation learning is to decompose visual scenes into a structured representation that isolates the entities… (voir plus). Recent successes have shown that object-centric representation learning can be scaled to real-world scenes by utilizing pre-trained self-supervised features. However, so far, object-centric methods have mostly been applied in-distribution, with models trained and evaluated on the same dataset. This is in contrast to the wider trend in machine learning towards general-purpose models directly applicable to unseen data and tasks. Thus, in this work, we study current object-centric methods through the lens of zero-shot generalization by introducing a benchmark comprising eight different synthetic and real-world datasets. We analyze the factors influencing zero-shot performance and find that training on diverse real-world images improves transferability to unseen scenarios. Furthermore, inspired by the success of task-specific fine-tuning in foundation models, we introduce a novel fine-tuning strategy to adapt pre-trained vision encoders for the task of object discovery. We find that the proposed approach results in state-of-the-art performance for unsupervised object discovery, exhibiting strong zero-shot transfer to unseen datasets.
Zero-Shot Object-Centric Representation Learning
Aniket Rajiv Didolkar
Andrii Zadaianchuk
Michael Curtis Mozer
Georg Martius
Maximilian Seitzer
The goal of object-centric representation learning is to decompose visual scenes into a structured representation that isolates the entities… (voir plus). Recent successes have shown that object-centric representation learning can be scaled to real-world scenes by utilizing pre-trained self-supervised features. However, so far, object-centric methods have mostly been applied in-distribution, with models trained and evaluated on the same dataset. This is in contrast to the wider trend in machine learning towards general-purpose models directly applicable to unseen data and tasks. Thus, in this work, we study current object-centric methods through the lens of zero-shot generalization by introducing a benchmark comprising eight different synthetic and real-world datasets. We analyze the factors influencing zero-shot performance and find that training on diverse real-world images improves transferability to unseen scenarios. Furthermore, inspired by the success of task-specific fine-tuning in foundation models, we introduce a novel fine-tuning strategy to adapt pre-trained vision encoders for the task of object discovery. We find that the proposed approach results in state-of-the-art performance for unsupervised object discovery, exhibiting strong zero-shot transfer to unseen datasets.
Zero-Shot Object-Centric Representation Learning
Aniket Rajiv Didolkar
Andrii Zadaianchuk
Michael Curtis Mozer
Georg Martius
Maximilian Seitzer
The goal of object-centric representation learning is to decompose visual scenes into a structured representation that isolates the entities… (voir plus). Recent successes have shown that object-centric representation learning can be scaled to real-world scenes by utilizing pre-trained self-supervised features. However, so far, object-centric methods have mostly been applied in-distribution, with models trained and evaluated on the same dataset. This is in contrast to the wider trend in machine learning towards general-purpose models directly applicable to unseen data and tasks. Thus, in this work, we study current object-centric methods through the lens of zero-shot generalization by introducing a benchmark comprising eight different synthetic and real-world datasets. We analyze the factors influencing zero-shot performance and find that training on diverse real-world images improves transferability to unseen scenarios. Furthermore, inspired by the success of task-specific fine-tuning in foundation models, we introduce a novel fine-tuning strategy to adapt pre-trained vision encoders for the task of object discovery. We find that the proposed approach results in state-of-the-art performance for unsupervised object discovery, exhibiting strong zero-shot transfer to unseen datasets.