Portrait of Frederik Träuble is unavailable

Frederik Träuble

Alumni

Publications

Low Compute Unlearning via Sparse Representations
Ashish Malik
Michael Curtis Mozer
Sanjeev Arora
Machine unlearning, which involves erasing knowledge about a \emph{forget set} from a trained model, can prove to be costly and infeasible … (see more)using existing techniques. We propose a low-compute unlearning technique based on a discrete representational bottleneck. We show that the proposed technique efficiently unlearns the forget set and incurs negligible damage to the model's performance on the rest of the dataset. We evaluate the proposed technique on the problem of class unlearning using four datasets: CIFAR-10, CIFAR-100, LACUNA-100 and ImageNet-1k. We compare the proposed technique to SCRUB, a state-of-the-art approach which uses knowledge distillation for unlearning. Across all four datasets, the proposed technique performs as well as, if not better than SCRUB while incurring almost no computational cost.
Unlearning via Sparse Representations
Ashish Malik
Michael Curtis Mozer
Sanjeev Arora
Unlearning via Sparse Representations
Ashish Malik
Michael Curtis Mozer
Sanjeev Arora
Machine \emph{unlearning}, which involves erasing knowledge about a \emph{forget set} from a trained model, can prove to be costly and infea… (see more)sible by existing techniques. We propose a nearly compute-free zero-shot unlearning technique based on a discrete representational bottleneck. We show that the proposed technique efficiently unlearns the forget set and incurs negligible damage to the model's performance on the rest of the data set. We evaluate the proposed technique on the problem of \textit{class unlearning} using three datasets: CIFAR-10, CIFAR-100, and LACUNA-100. We compare the proposed technique to SCRUB, a state-of-the-art approach which uses knowledge distillation for unlearning. Across all three datasets, the proposed technique performs as well as, if not better than SCRUB while incurring almost no computational cost.
Discrete Key-Value Bottleneck
Nasim Rahaman
Michael Curtis Mozer
Bernhard Schölkopf
A General-Purpose Neural Architecture for Geospatial Systems
Nasim Rahaman
Francesco Locatello
Alexandre Lacoste
Li Erran Li
Bernhard Schölkopf
CausalWorld: A Robotic Manipulation Benchmark for Causal Structure and Transfer Learning
Despite recent successes of reinforcement learning (RL), it remains a challenge for agents to transfer learned skills to related environment… (see more)s. To facilitate research addressing this problem, we proposeCausalWorld, a benchmark for causal structure and transfer learning in a robotic manipulation environment. The environment is a simulation of an open-source robotic platform, hence offering the possibility of sim-to-real transfer. Tasks consist of constructing 3D shapes from a set of blocks - inspired by how children learn to build complex structures. The key strength of CausalWorld is that it provides a combinatorial family of such tasks with common causal structure and underlying factors (including, e.g., robot and object masses, colors, sizes). The user (or the agent) may intervene on all causal variables, which allows for fine-grained control over how similar different tasks (or task distributions) are. One can thus easily define training and evaluation distributions of a desired difficulty level, targeting a specific form of generalization (e.g., only changes in appearance or object mass). Further, this common parametrization facilitates defining curricula by interpolating between an initial and a target task. While users may define their own task distributions, we present eight meaningful distributions as concrete benchmarks, ranging from simple to very challenging, all of which require long-horizon planning as well as precise low-level motor control. Finally, we provide baseline results for a subset of these tasks on distinct training curricula and corresponding evaluation protocols, verifying the feasibility of the tasks in this benchmark.