Mila organise son premier hackathon en informatique quantique le 21 novembre. Une journée unique pour explorer le prototypage quantique et l’IA, collaborer sur les plateformes de Quandela et IBM, et apprendre, échanger et réseauter dans un environnement stimulant au cœur de l’écosystème québécois en IA et en quantique.
Une nouvelle initiative pour renforcer les liens entre la communauté de recherche, les partenaires et les expert·e·s en IA à travers le Québec et le Canada, grâce à des rencontres et événements en présentiel axés sur l’adoption de l’IA dans l’industrie.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
The Winograd Schema Challenge (WSC) and variants inspired by it have become important benchmarks for common-sense reasoning (CSR). Model per… (voir plus)formance on the WSC has quickly progressed from chance-level to near-human using neural language models trained on massive corpora. In this paper, we analyze the effects of varying degrees of overlaps that occur between these corpora and the test instances in WSC-style tasks. We find that a large number of test instances overlap considerably with the pretraining corpora on which state-of-the-art models are trained, and that a significant drop in classification accuracy occurs when models are evaluated on instances with minimal overlap. Based on these results, we provide the WSC-Web dataset, consisting of over 60k pronoun disambiguation problems scraped from web data, being both the largest corpus to date, and having a significantly lower proportion of overlaps with current pretraining corpora.
2020-12-01
Proceedings of the 28th International Conference on Computational Linguistics (publié)
Recent studies have significantly improved the state-of-the-art on common-sense reasoning (CSR) benchmarks like the Winograd Schema Challeng… (voir plus)e (WSC) and SWAG. The question we ask in this paper is whether improved performance on these benchmarks represents genuine progress towards common-sense-enabled systems. We make case studies of both benchmarks and design protocols that clarify and qualify the results of previous work by analyzing threats to the validity of previous experimental designs. Our protocols account for several properties prevalent in common-sense benchmarks including size limitations, structural regularities, and variable instance difficulty.
2019-11-01
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP) (publié)
The NLP and ML communities have long been interested in developing models capable of common-sense reasoning, and recent works have significa… (voir plus)ntly improved the state of the art on benchmarks like the Winograd Schema Challenge (WSC). Despite these advances, the complexity of tasks designed to test common-sense reasoning remains under-analyzed. In this paper, we make a case study of the Winograd Schema Challenge and, based on two new measures of instance-level complexity, design a protocol that both clarifies and qualifies the results of previous work. Our protocol accounts for the WSC's limited size and variable instance difficulty, properties common to other common-sense benchmarks. Accounting for these properties when assessing model results may prevent unjustified conclusions.
We introduce a new benchmark task for coreference resolution, Hard-CoRe, that targets common-sense reasoning and world knowledge. Previous c… (voir plus)oreference resolution tasks have been overly vulnerable to systems that simply exploit the number and gender of the antecedents, or have been handcrafted and do not reflect the diversity of sentences in naturally occurring text. With these limitations in mind, we present a resolution task that is both challenging and realistic. We demonstrate that various coreference systems, whether rule-based, feature-rich, graphical, or neural-based, perform at random or slightly above-random on the task, whereas human performance is very strong with high inter-annotator agreement. To explain this performance gap, we show empirically that state-of-the art models often fail to capture context and rely only on the antecedents to make a decision.
We introduce a new benchmark for coreference resolution and NLI, KnowRef, that targets common-sense understanding and world knowledge. Previ… (voir plus)ous coreference resolution tasks can largely be solved by exploiting the number and gender of the antecedents, or have been handcrafted and do not reflect the diversity of naturally occurring text. We present a corpus of over 8,000 annotated text passages with ambiguous pronominal anaphora. These instances are both challenging and realistic. We show that various coreference systems, whether rule-based, feature-rich, or neural, perform significantly worse on the task than humans, who display high inter-annotator agreement. To explain this performance gap, we show empirically that state-of-the art models often fail to capture context, instead relying on the gender or number of candidate antecedents to make a decision. We then use problem-specific insights to propose a data-augmentation trick called antecedent switching to alleviate this tendency in models. Finally, we show that antecedent switching yields promising results on other tasks as well: we use it to achieve state-of-the-art results on the GAP coreference task.
2018-11-02
Annual Meeting of the Association for Computational Linguistics (publié)
We introduce an automatic system that achieves state-of-the-art results on the Winograd Schema Challenge (WSC), a common sense reasoning tas… (voir plus)k that requires diverse, complex forms of inference and knowledge. Our method uses a knowledge hunting module to gather text from the web, which serves as evidence for candidate problem resolutions. Given an input problem, our system generates relevant queries to send to a search engine, then extracts and classifies knowledge from the returned results and weighs them to make a resolution. Our approach improves F1 performance on the full WSC by 0.21 over the previous best and represents the first system to exceed 0.5 F1. We further demonstrate that the approach is competitive on the Choice of Plausible Alternatives (COPA) task, which suggests that it is generally applicable.
2018-10-01
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing (publié)
We introduce an automatic system that performs well on two common-sense reasoning tasks, the Winograd Schema Challenge (WSC) and the Choice … (voir plus)of Plausible Alternatives (COPA). Problem instances from these tasks require diverse, complex forms of inference and knowledge to solve. Our method uses a knowledge-hunting module to gather text from the web, which serves as evidence for candidate problem resolutions. Given an input problem, our system generates relevant queries to send to a search engine. It extracts and classifies knowledge from the returned results and weighs it to make a resolution. Our approach improves F1 performance on the WSC by 0.16 over the previous best and is competitive with the state-of-the-art on COPA, demonstrating its general applicability.
2018-06-01
North American Chapter of the Association for Computational Linguistics (publié)