Portrait of Siva Reddy

Siva Reddy

Core Academic Member
Canada CIFAR AI Chair
Assistant Professor, McGill University, School of Computer Science and Department of Linguistics
Research Topics
Deep Learning
Natural Language Processing
Reasoning
Representation Learning

Biography

Siva Reddy is an assistant professor at the School of Computer Science and in the Department of Linguistics at McGill University. He completed a postdoc with the Stanford NLP Group in September 2019.

Reddy’s research goal is to enable machines with natural language understanding abilities in order to facilitate applications like question answering and conversational systems. His expertise includes building symbolic (linguistic and induced) and deep learning models for language.

Current Students

PhD - McGill University
Master's Research - McGill University
PhD - McGill University
Research Intern - McGill University
Independent visiting researcher
Co-supervisor :
Collaborating researcher - University of Edinburgh
Research Intern - McGill University
Independent visiting researcher
Co-supervisor :
Master's Research - McGill University
Co-supervisor :
Collaborating researcher
PhD - McGill University
Co-supervisor :
Collaborating researcher - INSA Lyon, France
PhD - McGill University
Principal supervisor :
PhD - McGill University
Co-supervisor :
Collaborating Alumni - UNIVERSITÄT DES SAARLANDES
PhD - McGill University
PhD - McGill University
Co-supervisor :
Master's Research - McGill University
Co-supervisor :
PhD - McGill University
Master's Research - McGill University
PhD - McGill University
Postdoctorate - McGill University
Collaborating Alumni
PhD - McGill University
Principal supervisor :
Independent visiting researcher
Co-supervisor :
Collaborating Alumni
Collaborating Alumni - McGill University
Independent visiting researcher
Co-supervisor :
Research Intern - McGill University
Collaborating Alumni - McGill University

Publications

BigDocs: An Open Dataset for Training Multimodal Models on Document and Code Tasks
Juan A. Rodriguez
Xiangru Jian
Akshay Kalkunte Suresh
Amirhossein Abaskohi
Pierre-Andre Noel
Sanket Biswas … (see 23 more)
Sara Shanian
Noah Bolger
Kurt MacDonald
Simon Fauvel
Sathwik Tejaswi Madhusudhan
Srinivas Sunkara
Joao Monteiro
Krishnamurthy Dj Dvijotham
Torsten Scholak
Sepideh Kharaghani
Sean Hughes
M. Özsu
Issam Hadj Laradji
David Vazquez
Sai Rajeswar
Multimodal AI has the potential to significantly enhance document-understanding tasks, such as processing receipts, understanding workflows,… (see more) extracting data from documents, and summarizing reports. Code generation tasks that require long-structured outputs can also be enhanced by multimodality. Despite this, their use in commercial applications is often limited due to limited access to training data and restrictive licensing, which hinders open access. To address these limitations, we introduce BigDocs-7.5M, a high-quality, open-access dataset comprising 7.5 million multimodal documents across 30 tasks. We use an efficient data curation process to ensure our data is high-quality and license-permissive. Our process emphasizes accountability, responsibility, and transparency through filtering rules, traceable metadata, and careful content analysis. Additionally, we introduce BigDocs-Bench, a benchmark suite with 10 novel tasks where we create datasets that reflect real-world use cases involving reasoning over Graphical User Interfaces (GUI) and code generation from images. Our experiments show that training with BigDocs-Bench improves average performance up to 25.8% over closed-source GPT-4o in document reasoning and structured output tasks such as Screenshot2HTML or Image2Latex generation. Finally, human evaluations showed a preference for outputs from models trained on BigDocs over GPT-4o. This suggests that BigDocs can help both academics and the open-source community utilize and improve AI tools to enhance multimodal capabilities and document reasoning. The project is hosted at https://bigdocs.github.io .
BigDocs: An Open and Permissively-Licensed Dataset for Training Multimodal Models on Document and Code Tasks
Juan A. Rodriguez
Xiangru Jian
Akshay Kalkunte Suresh
Amirhossein Abaskohi
Pierre-Andre Noel
Sanket Biswas … (see 23 more)
Sara Shanian
Noah Bolger
Kurt MacDonald
Simon Fauvel
Sathwik Tejaswi Madhusudhan
Srinivas Sunkara
Joao Monteiro
Krishnamurthy Dj Dvijotham
Torsten Scholak
Sepideh Kharaghani
Sean Hughes
M. Özsu
Issam Hadj Laradji
David Vazquez
Sai Rajeswar
Multimodal AI has the potential to significantly enhance document-understanding tasks, such as processing receipts, understanding workflows,… (see more) extracting data from documents, and summarizing reports. Code generation tasks that require long-structured outputs can also be enhanced by multimodality. Despite this, their use in commercial applications is often limited due to limited access to training data and restrictive licensing, which hinders open access. To address these limitations, we introduce BigDocs-7.5M, a high-quality, open-access dataset comprising 7.5 million multimodal documents across 30 tasks. We use an efficient data curation process to ensure our data is high-quality and license-permissive. Our process emphasizes accountability, responsibility, and transparency through filtering rules, traceable metadata, and careful content analysis. Additionally, we introduce BigDocs-Bench, a benchmark suite with 10 novel tasks where we create datasets that reflect real-world use cases involving reasoning over Graphical User Interfaces (GUI) and code generation from images. Our experiments show that training with BigDocs-Bench improves average performance up to 25.8% over closed-source GPT-4o in document reasoning and structured output tasks such as Screenshot2HTML or Image2Latex generation. Finally, human evaluations showed a preference for outputs from models trained on BigDocs over GPT-4o. This suggests that BigDocs can help both academics and the open-source community utilize and improve AI tools to enhance multimodal capabilities and document reasoning. The project is hosted at https://bigdocs.github.io .
VinePPO: Accurate Credit Assignment in RL for LLM Mathematical Reasoning
Large language models (LLMs) are increasingly required to solve complex reasoning tasks, like mathematical problems, that involve multiple r… (see more)easoning steps before feedback is received. Effectively identifying and prioritizing key steps by accurately assigning credit to these intermediate steps is essential for enhancing model performance. Proximal Policy Optimization (PPO), a state-of-the-art reinforcement learning algorithm for finetuning LLMs, addresses the credit assignment problem by employing value networks to predict the expected cumulative rewards of intermediate states. In this work, we identify significant limitations with this value estimation method. To address this, we propose \methodname that leverages the flexibility of language environments to compute unbiased Monte Carlo-based estimates of the intermediate values. VinePPO consistently outperforms standard PPO, doing so more efficiently and with lower divergence from the reference model. Our findings underscore the critical importance of accurate credit assignment in LLM post-training and present a simple, yet effective solution.
VinePPO: Accurate Credit Assignment in RL for LLM Mathematical Reasoning
Large language models (LLMs) are increasingly required to solve complex reasoning tasks, like mathematical problems, that involve multiple r… (see more)easoning steps before feedback is received. Effectively identifying and prioritizing key steps by accurately assigning credit to these intermediate steps is essential for enhancing model performance. Proximal Policy Optimization (PPO), a state-of-the-art reinforcement learning algorithm for finetuning LLMs, addresses the credit assignment problem by employing value networks to predict the expected cumulative rewards of intermediate states. In this work, we identify significant limitations with this value estimation method. To address this, we propose \methodname that leverages the flexibility of language environments to compute unbiased Monte Carlo-based estimates of the intermediate values. VinePPO consistently outperforms standard PPO, doing so more efficiently and with lower divergence from the reference model. Our findings underscore the critical importance of accurate credit assignment in LLM post-training and present a simple, yet effective solution.
VinePPO: Refining Credit Assignment in RL Training of LLMs
Large language models (LLMs) are increasingly applied to complex reasoning tasks that require executing several complex steps before receivi… (see more)ng any reward. Properly assigning credit to these steps is essential for enhancing model performance. Proximal Policy Optimization (PPO), a common reinforcement learning (RL) algorithm used for LLM finetuning, employs value networks to tackle credit assignment. However, recent approaches achieve strong results without it, raising questions about the efficacy of value networks in practice. In this work, we systematically evaluate the efficacy of value networks and reveal their significant shortcomings in reasoning-heavy LLM tasks, showing that they often produce poor estimate of expected return and barely outperform a random baseline when comparing alternative steps. This motivates our key question: Can improved credit assignment enhance RL training for LLMs? To address this, we propose VinePPO, a straightforward approach that leverages the flexibility of language environments to compute unbiased Monte Carlo-based estimates. Our method consistently outperforms PPO and other baselines across MATH and GSM8K datasets in less wall-clock time (up to 3.0x). Crucially, it achieves higher test accuracy for a given training accuracy, capturing more generalization signal per sample. These results emphasize the importance of accurate credit assignment in RL training of LLM.
VinePPO: Unlocking RL Potential For LLM Reasoning Through Refined Credit Assignment
Large language models (LLMs) are increasingly applied to complex reasoning tasks that require executing several complex steps before receivi… (see more)ng any reward. Properly assigning credit to these steps is essential for enhancing model performance. Proximal Policy Optimization (PPO), a state-of-the-art reinforcement learning (RL) algorithm used for LLM finetuning, employs value networks to tackle credit assignment. However, value networks face challenges in predicting the expected cumulative rewards accurately in complex reasoning tasks, often leading to high-variance updates and suboptimal performance. In this work, we systematically evaluate the efficacy of value networks and reveal their significant shortcomings in reasoning-heavy LLM tasks, showing that they barely outperform a random baseline when comparing alternative steps. To address this, we propose VinePPO, a straightforward approach that leverages the flexibility of language environments to compute unbiased Monte Carlo-based estimates, bypassing the need for large value networks. Our method consistently outperforms PPO and other RL-free baselines across MATH and GSM8K datasets with fewer gradient updates (up to 9x), less wall-clock time (up to 3.0x). These results emphasize the importance of accurate credit assignment in RL finetuning of LLM and demonstrate VinePPO's potential as a superior alternative.
VinePPO: Unlocking RL Potential For LLM Reasoning Through Refined Credit Assignment
VinePPO: Unlocking RL Potential For LLM Reasoning Through Refined Credit Assignment
Large language models (LLMs) are increasingly applied to complex reasoning tasks that require executing several complex steps before receivi… (see more)ng any reward. Properly assigning credit to these steps is essential for enhancing model performance. Proximal Policy Optimization (PPO), a state-of-the-art reinforcement learning (RL) algorithm used for LLM finetuning, employs value networks to tackle credit assignment. However, value networks face challenges in predicting the expected cumulative rewards accurately in complex reasoning tasks, often leading to high-variance updates and suboptimal performance. In this work, we systematically evaluate the efficacy of value networks and reveal their significant shortcomings in reasoning-heavy LLM tasks, showing that they barely outperform a random baseline when comparing alternative steps. To address this, we propose VinePPO, a straightforward approach that leverages the flexibility of language environments to compute unbiased Monte Carlo-based estimates, bypassing the need for large value networks. Our method consistently outperforms PPO and other RL-free baselines across MATH and GSM8K datasets with fewer gradient updates (up to 9x), less wall-clock time (up to 3.0x). These results emphasize the importance of accurate credit assignment in RL finetuning of LLM and demonstrate VinePPO's potential as a superior alternative.
Learning Action and Reasoning-Centric Image Editing from Videos and Simulation
Are self-explanations from Large Language Models faithful?
Benchmarking Vision Language Models for Cultural Understanding
Sjoerd van Steenkiste
Lisa Anne Hendricks
Karolina Stanczak
Foundation models and vision-language pre-training have notably advanced Vision Language Models (VLMs), enabling multimodal processing of vi… (see more)sual and linguistic data. However, their performance has been typically assessed on general scene understanding - recognizing objects, attributes, and actions - rather than cultural comprehension. This study introduces CulturalVQA, a visual question-answering benchmark aimed at assessing VLM’s geo-diverse cultural understanding. We curate a diverse collection of 2,378 image-question pairs with 1-5 answers per question representing cultures from 11 countries across 5 continents. The questions probe understanding of various facets of culture such as clothing, food, drinks, rituals, and traditions. Benchmarking VLMs on CulturalVQA, including GPT-4V and Gemini, reveals disparity in their level of cultural understanding across regions, with strong cultural understanding capabilities for North America while significantly weaker capabilities for Africa. We observe disparity in their performance across cultural facets too, with clothing, rituals, and traditions seeing higher performances than food and drink. These disparities help us identify areas where VLMs lack cultural understanding and demonstrate the potential of CulturalVQA as a comprehensive evaluation set for gauging VLM progress in understanding diverse cultures.
LLM2Vec: Large Language Models Are Secretly Powerful Text Encoders