Portrait of Siva Reddy

Siva Reddy

Core Academic Member
Canada CIFAR AI Chair
Assistant Professor, McGill University, School of Computer Science and Department of Linguistics
Research Topics
Deep Learning
Natural Language Processing
Reasoning
Representation Learning

Biography

Siva Reddy is an assistant professor at the School of Computer Science and in the Department of Linguistics at McGill University. He completed a postdoc with the Stanford NLP Group in September 2019.

Reddy’s research goal is to enable machines with natural language understanding abilities in order to facilitate applications like question answering and conversational systems. His expertise includes building symbolic (linguistic and induced) and deep learning models for language.

Current Students

PhD - McGill University
Master's Research - McGill University
PhD - McGill University
Collaborating researcher
PhD - McGill University
Master's Research - McGill University
PhD - McGill University
Principal supervisor :
PhD - McGill University
Collaborating Alumni - UNIVERSITÄT DES SAARLANDES
PhD - McGill University
PhD - McGill University
Co-supervisor :
PhD - Polytechnique Montréal
Principal supervisor :
Research Intern - McGill University
PhD - McGill University
Postdoctorate - McGill University
PhD - McGill University
Principal supervisor :
Collaborating researcher
Research Intern - McGill University
Postdoctorate - McGill University
Research Intern - McGill University
Collaborating researcher - Cambridge University
Collaborating Alumni - McGill University

Publications

WebLINX: Real-World Website Navigation with Multi-Turn Dialogue
Xing Han Lu
Zdeněk Kasner
We propose the problem of conversational web navigation, where a digital agent controls a web browser and follows user instructions to solve… (see more) real-world tasks in a multi-turn dialogue fashion. To support this problem, we introduce WEBLINX - a large-scale benchmark of 100K interactions across 2300 expert demonstrations of conversational web navigation. Our benchmark covers a broad range of patterns on over 150 real-world websites and can be used to train and evaluate agents in diverse scenarios. Due to the magnitude of information present, Large Language Models (LLMs) cannot process entire web pages in real-time. To solve this bottleneck, we design a retrieval-inspired model that efficiently prunes HTML pages by ranking relevant elements. We use the selected elements, along with screenshots and action history, to assess a variety of models for their ability to replicate human behavior when navigating the web. Our experiments span from small text-only to proprietary multimodal LLMs. We find that smaller finetuned decoders surpass the best zero-shot LLMs (including GPT-4V), but also larger finetuned multimodal models which were explicitly pretrained on screenshots. However, all finetuned models struggle to generalize to unseen websites. Our findings highlight the need for large multimodal models that can generalize to novel settings. Our code, data and models are available for research: https://mcgill-nlp.github.io/weblinx
WebLINX: Real-World Website Navigation with Multi-Turn Dialogue
Xing Han Lu
Zdeněk Kasner
We propose the problem of conversational web navigation, where a digital agent controls a web browser and follows user instructions to solve… (see more) real-world tasks in a multi-turn dialogue fashion. To support this problem, we introduce WebLINX - a large-scale benchmark of 100K interactions across 2300 expert demonstrations of conversational web navigation. Our benchmark covers a broad range of patterns on over 150 real-world websites and can be used to train and evaluate agents in diverse scenarios. Due to the magnitude of information present, Large Language Models (LLMs) cannot process entire web pages in real-time. To solve this bottleneck, we design a retrieval-inspired model that efficiently prunes HTML pages by ranking relevant elements. We use the selected elements, along with screenshots and action history, to assess a variety of models for their ability to replicate human behavior when navigating the web. Our experiments span from small text-only to proprietary multimodal LLMs. We find that smaller finetuned decoders surpass the best zero-shot LLMs (including GPT-4V), but also larger finetuned multimodal models which were explicitly pretrained on screenshots. However, all finetuned models struggle to generalize to unseen websites. Our findings highlight the need for large multimodal models that can generalize to novel settings. Our code, data and models are available for research: https://mcgill-nlp.github.io/weblinx.
A Compositional Typed Semantics for Universal Dependencies
Laurestine Bradford
Timothy John O'donnell
When does word order matter and when doesn't it?
Xuanda Chen
Timothy John O'donnell
Language models (LMs) may appear insensitive to word order changes in natural language understanding (NLU) tasks. In this paper, we propose … (see more)that linguistic redundancy can explain this phenomenon, whereby word order and other linguistic cues such as case markers provide overlapping and thus redundant information. Our hypothesis is that models exhibit insensitivity to word order when the order provides redundant information, and the degree of insensitivity varies across tasks. We quantify how informative word order is using mutual information (MI) between unscrambled and scrambled sentences. Our results show the effect that the less informative word order is, the more consistent the model's predictions are between unscrambled and scrambled sentences. We also find that the effect varies across tasks: for some tasks, like SST-2, LMs' prediction is almost always consistent with the original one even if the Pointwise-MI (PMI) changes, while for others, like RTE, the consistency is near random when the PMI gets lower, i.e., word order is really important.
The Leukemoid Reaction in Severe Alcoholic Hepatitis: A Case Report
Sachin Agrawal
Sunil Kumar
Sourya Acharya
WebLINX: Real-World Website Navigation with Multi-Turn Dialogue
Xing Han Lu
Zdeněk Kasner
We propose the problem of conversational web navigation, where a digital agent controls a web browser and follows user instructions to solve… (see more) real-world tasks in a multi-turn dialogue fashion. To support this problem, we introduce WEBLINX - a large-scale benchmark of 100K interactions across 2300 expert demonstrations of conversational web navigation. Our benchmark covers a broad range of patterns on over 150 real-world websites and can be used to train and evaluate agents in diverse scenarios. Due to the magnitude of information present, Large Language Models (LLMs) cannot process entire web pages in real-time. To solve this bottleneck, we design a retrieval-inspired model that efficiently prunes HTML pages by ranking relevant elements. We use the selected elements, along with screenshots and action history, to assess a variety of models for their ability to replicate human behavior when navigating the web. Our experiments span from small text-only to proprietary multimodal LLMs. We find that smaller finetuned decoders surpass the best zero-shot LLMs (including GPT-4V), but also larger finetuned multimodal models which were explicitly pretrained on screenshots. However, all finetuned models struggle to generalize to unseen websites. Our findings highlight the need for large multimodal models that can generalize to novel settings. Our code, data and models are available for research: https://mcgill-nlp.github.io/weblinx
WebLINX: Real-World Website Navigation with Multi-Turn Dialogue
Xing Han Lu
Zdeněk Kasner
We propose the problem of conversational web navigation, where a digital agent controls a web browser and follows user instructions to solve… (see more) real-world tasks in a multi-turn dialogue fashion. To support this problem, we introduce WEBLINX - a large-scale benchmark of 100K interactions across 2300 expert demonstrations of conversational web navigation. Our benchmark covers a broad range of patterns on over 150 real-world websites and can be used to train and evaluate agents in diverse scenarios. Due to the magnitude of information present, Large Language Models (LLMs) cannot process entire web pages in real-time. To solve this bottleneck, we design a retrieval-inspired model that efficiently prunes HTML pages by ranking relevant elements. We use the selected elements, along with screenshots and action history, to assess a variety of models for their ability to replicate human behavior when navigating the web. Our experiments span from small text-only to proprietary multimodal LLMs. We find that smaller finetuned decoders surpass the best zero-shot LLMs (including GPT-4V), but also larger finetuned multimodal models which were explicitly pretrained on screenshots. However, all finetuned models struggle to generalize to unseen websites. Our findings highlight the need for large multimodal models that can generalize to novel settings. Our code, data and models are available for research: https://mcgill-nlp.github.io/weblinx
Data science opportunities of large language models for neuroscience and biomedicine
Andrew Thieme
Oleksiy Levkovskyy
Paul Wren
Thomas Ray
Data science opportunities of large language models for neuroscience and biomedicine
Andrew Thieme
Oleksiy Levkovskyy
Paul Wren
Thomas Ray
Data science opportunities of large language models for neuroscience and biomedicine
Andrew Thieme
Oleksiy Levkovskyy
Paul Wren
Thomas Ray
Data science opportunities of large language models for neuroscience and biomedicine
Andrew Thieme
Oleksiy Levkovskyy
Paul Wren
Thomas Ray
Benchmarking Vision Language Models for Cultural Understanding
Shravan Nayak
Kanishk Jain
Rabiul Awal
Sjoerd van Steenkiste
Lisa Anne Hendricks
Karolina Sta'nczak
Foundation models and vision-language pre-training have notably advanced Vision Language Models (VLMs), enabling multimodal processing of vi… (see more)sual and linguistic data. However, their performance has been typically assessed on general scene understanding - recognizing objects, attributes, and actions - rather than cultural comprehension. This study introduces CulturalVQA, a visual question-answering benchmark aimed at assessing VLM's geo-diverse cultural understanding. We curate a collection of 2,378 image-question pairs with 1-5 answers per question representing cultures from 11 countries across 5 continents. The questions probe understanding of various facets of culture such as clothing, food, drinks, rituals, and traditions. Benchmarking VLMs on CulturalVQA, including GPT-4V and Gemini, reveals disparity in their level of cultural understanding across regions, with strong cultural understanding capabilities for North America while significantly lower performance for Africa. We observe disparity in their performance across cultural facets too, with clothing, rituals, and traditions seeing higher performances than food and drink. These disparities help us identify areas where VLMs lack cultural understanding and demonstrate the potential of CulturalVQA as a comprehensive evaluation set for gauging VLM progress in understanding diverse cultures.