Portrait of Aaron Courville

Aaron Courville

Core Academic Member
Canada CIFAR AI Chair
Associate Professor, Université de Montréal, Department of Computer Science and Operations Research
Research Topics
Computer Vision
Deep Learning
Efficient Communication in General Sum Game
Game Theory
Generative Models
Multi-Agent Systems
Natural Language Processing
Reinforcement Learning
Representation Learning

Biography

Aaron Courville is a professor in the Department of Computer Science and Operations Research (DIRO) at Université de Montréal and Scientific Director of IVADO. He has a PhD from the Robotics Institute, Carnegie Mellon University.

Courville was an early contributor to deep learning: he is a founding member of Mila – Quebec Artificial Intelligence Institute. Together with Ian Goodfellow and Yoshua Bengio, he co-wrote the seminal textbook on deep learning.

His current research focuses on the development of deep learning models and methods. He is particularly interested in reinforcement learning, multi-agent reinforcement learning, deep generative models and reasoning.

Courville holds a Canada CIFAR AI Chair and a Canada Research Chair in Systematic Generalization. His research has been supported by Microsoft Research, Samsung, Hitachi, Meta, Sony (Research Award) and Google (Focused Research Award).

Current Students

PhD - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Principal supervisor :
Master's Research - Université de Montréal
Master's Research - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
Professional Master's - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Co-supervisor :
Master's Research - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
Master's Research - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Principal supervisor :

Publications

Online black-box adaptation to label-shift in the presence of conditional-shift
Faruk Ahmed
We consider an out-of-distribution setting where trained predictive models are deployed online in new locations (inducing conditional-shift)… (see more), such that these locations are also associated with differently skewed target distributions (label-shift). While approaches for online adaptation to label-shift have recently been discussed by Wu et al. (2021), the potential presence of concurrent conditional-shift has not been considered in the literature, although one might anticipate such distributional shifts in realistic deployments. In this paper, we empirically explore the effectiveness of online adaptation methods in such situations on three synthetic and two realistic datasets, comprising both classification and regression problems. We show that it is possible to improve performance in these settings by learning additional hyper-parameters to account for the presence of conditional-shift by using appropriate validation sets.
Sample-Efficient Reinforcement Learning by Breaking the Replay Ratio Barrier
Pierluca D'Oro
Max Schwarzer
Evgenii Nikishin
Increasing the replay ratio, the number of updates of an agent's parameters per environment interaction, is an appealing strategy for improv… (see more)ing the sample efficiency of deep reinforcement learning algorithms. In this work, we show that fully or partially resetting the parameters of deep reinforcement learning agents causes better replay ratio scaling capabilities to emerge. We push the limits of the sample efficiency of carefully-modified algorithms by training them using an order of magnitude more updates than usual, significantly improving their performance in the Atari 100k and DeepMind Control Suite benchmarks. We then provide an analysis of the design choices required for favorable replay ratio scaling to be possible and discuss inherent limits and tradeoffs.
Simplicial Embeddings in Self-Supervised Learning and Downstream Classification
Samuel Lavoie
Christos Tsirigotis
Max Schwarzer
Kenji Kawaguchi
Ankit Vani
Michael Noukhovitch
Simplicial Embeddings (SEM) are representations learned through self-supervised learning (SSL), wherein a representation is projected into …
Bigger, Better, Faster: Human-level Atari with human-level efficiency
We introduce a value-based RL agent, which we call BBF, that achieves super-human performance in the Atari 100K benchmark. BBF relies on sca… (see more)ling the neural networks used for value estimation, as well as a number of other design choices that enable this scaling in a sample-efficient manner. We conduct extensive analyses of these design choices and provide insights for future work. We end with a discussion about updating the goalposts for sample-efficient RL research on the ALE. We make our code and data publicly available at https://github.com/google-research/google-research/tree/master/bigger_better_faster.
Expressiveness and Learnability: A Unifying View for Evaluating Self-Supervised Learning
Yuchen Lu
Zhen Liu
Aristide Baratin
Romain Laroche
Noisy Pairing and Partial Supervision for Stylized Opinion Summarization
Reinald Kim
Mirella Lapata. 2020
Un-611
Maxinder S. Kan-620
Asja Fischer
Somnath Basu
Roy Chowdhury
Chao Zhao
Tanya Goyal
Junyi Jiacheng Xu
Jessy Li
Ivor W. Tsang
James T. Kwok
Neil Houlsby
Andrei Giurgiu
Stanisław Jastrzębski … (see 22 more)
Bruna Morrone
Quentin de Laroussilhe
Mona Gesmundo
Attariyan Sylvain
Gelly
Thomas Wolf
Lysandre Debut
Julien Victor Sanh
Clement Chaumond
Anthony Delangue
Pier-339 Moi
Tim ric Cistac
R´emi Rault
Morgan Louf
Funtow-900 Joe
Sam Davison
Patrick Shleifer
Von Platen
Clara Ma
Yacine Jernite
Julien Plu
Canwen Xu
Opinion summarization research has primar-001 ily focused on generating summaries reflect-002 ing important opinions from customer reviews 0… (see more)03 without paying much attention to the writing 004 style. In this paper, we propose the stylized 005 opinion summarization task, which aims to 006 generate a summary of customer reviews in 007 the desired (e.g., professional) writing style. 008 To tackle the difficulty in collecting customer 009 and professional review pairs, we develop a 010 non-parallel training framework, Noisy Pair-011 ing and Partial Supervision ( NAPA ), which 012 trains a stylized opinion summarization sys-013 tem from non-parallel customer and profes-014 sional review sets. We create a benchmark P RO - 015 S UM by collecting customer and professional 016 reviews from Yelp and Michelin. Experimental 017 results on P RO S UM and FewSum demonstrate 018 that our non-parallel training framework con-019 sistently improves both automatic and human 020 evaluations, successfully building a stylized 021 opinion summarization model that can gener-022 ate professionally-written summaries from cus-023 tomer reviews. 024
Using Representation Expressiveness and Learnability to Evaluate Self-Supervised Learning Methods
Yuchen Lu
Zhen Liu
Aristide Baratin
Romain Laroche
Versatile Energy-Based Models for High Energy Physics
Taoli Cheng
Teaching Algorithmic Reasoning via In-context Learning
Hattie Zhou
Azade Nova
Behnam Neyshabur
Hanie Sedghi
On the Compositional Generalization Gap of In-Context Learning
Pretrained large generative language models have shown great performance on many tasks, but exhibit low compositional generalization abiliti… (see more)es. Scaling such models has been shown to improve their performance on various NLP tasks even just by conditioning them on a few examples to solve the task without any fine-tuning (also known as in-context learning). In this work, we look at the gap between the in-distribution (ID) and out-of-distribution (OOD) performance of such models in semantic parsing tasks with in-context learning. In the ID settings, the demonstrations are from the same split (\textit{test} or \textit{train}) that the model is being evaluated on, and in the OOD settings, they are from the other split. We look at how the relative generalization gap of in-context learning evolves as models are scaled up. We evaluate four model families, OPT, BLOOM, CodeGen and Codex on three semantic parsing datasets, CFQ, SCAN and GeoQuery with different number of exemplars, and observe a trend of decreasing relative generalization gap as models are scaled up.
Invariant representation driven neural classifier for anti-QCD jet tagging
Taoli Cheng
Cascaded Video Generation for Videos In-the-Wild
Lluis Castrejon
Nicolas Ballas
Videos can be created by first outlining a global view of the scene and then adding local details. Inspired by this idea we propose a cascad… (see more)ed model for video generation which follows a coarse to fine approach. First our model generates a low resolution video, establishing the global scene structure, which is then refined by subsequent cascade levels operating at larger resolutions. We train each cascade level sequentially on partial views of the videos, which reduces the computational complexity of our model and makes it scalable to high-resolution videos with many frames. We empirically validate our approach on UCF101 and Kinetics-600, for which our model is competitive with the state-of-the-art. We further demonstrate the scaling capabilities of our model and train a three-level model on the BDD100K dataset which generates 256x256 pixels videos with 48 frames.