Portrait of Aaron Courville

Aaron Courville

Core Academic Member
Canada CIFAR AI Chair
Associate Professor, Université de Montréal, Department of Computer Science and Operations Research
Research Topics
Computer Vision
Deep Learning
Efficient Communication in General Sum Game
Game Theory
Generative Models
Multi-Agent Systems
Natural Language Processing
Reinforcement Learning
Representation Learning

Biography

Aaron Courville is a professor in the Department of Computer Science and Operations Research (DIRO) at Université de Montréal and Scientific Director of IVADO. He has a PhD from the Robotics Institute, Carnegie Mellon University.

Courville was an early contributor to deep learning: he is a founding member of Mila – Quebec Artificial Intelligence Institute. Together with Ian Goodfellow and Yoshua Bengio, he co-wrote the seminal textbook on deep learning.

His current research focuses on the development of deep learning models and methods. He is particularly interested in reinforcement learning, multi-agent reinforcement learning, deep generative models and reasoning.

Courville holds a Canada CIFAR AI Chair and a Canada Research Chair in Systematic Generalization. His research has been supported by Microsoft Research, Samsung, Hitachi, Meta, Sony (Research Award) and Google (Focused Research Award).

Current Students

PhD - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Principal supervisor :
Master's Research - Université de Montréal
Master's Research - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
Professional Master's - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Co-supervisor :
Master's Research - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
Master's Research - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Principal supervisor :

Publications

DR3: Value-Based Deep Reinforcement Learning Requires Explicit Regularization
Aviral Kumar
Tengyu Ma
George Tucker
Sergey Levine
Despite overparameterization, deep networks trained via supervised learning are surprisingly easy to optimize and exhibit excellent generali… (see more)zation. One hypothesis to explain this is that overparameterized deep networks enjoy the benefits of implicit regularization induced by stochastic gradient descent, which favors parsimonious solutions that generalize well on test inputs. It is reasonable to surmise that deep reinforcement learning (RL) methods could also benefit from this effect. In this paper, we discuss how the implicit regularization effect of SGD seen in supervised learning could in fact be harmful in the offline deep RL setting, leading to poor generalization and degenerate feature representations. Our theoretical analysis shows that when existing models of implicit regularization are applied to temporal difference learning, the resulting derived regularizer favors degenerate solutions with excessive aliasing, in stark contrast to the supervised learning case. We back up these findings empirically, showing that feature representations learned by a deep network value function trained via bootstrapping can indeed become degenerate, aliasing the representations for state-action pairs that appear on either side of the Bellman backup. To address this issue, we derive the form of this implicit regularizer and, inspired by this derivation, propose a simple and effective explicit regularizer, called DR3, that counteracts the undesirable effects of this implicit regularizer. When combined with existing offline RL methods, DR3 substantially improves performance and stability, alleviating unlearning in Atari 2600 games, D4RL domains, and robotic manipulation from images.
Fortuitous Forgetting in Connectionist Networks
Hattie Zhou
Ankit Vani
Forgetting is often seen as an unwanted characteristic in both human and machine learning. However, we propose that forgetting can in fact b… (see more)e favorable to learning. We introduce"forget-and-relearn"as a powerful paradigm for shaping the learning trajectories of artificial neural networks. In this process, the forgetting step selectively removes undesirable information from the model, and the relearning step reinforces features that are consistently useful under different conditions. The forget-and-relearn framework unifies many existing iterative training algorithms in the image classification and language emergence literature, and allows us to understand the success of these algorithms in terms of the disproportionate forgetting of undesirable information. We leverage this understanding to improve upon existing algorithms by designing more targeted forgetting operations. Insights from our analysis provide a coherent view on the dynamics of iterative training in neural networks and offer a clear path towards performance improvements.
MIDI-DDSP: Detailed Control of Musical Performance via Hierarchical Modeling
Yusong Wu
Ethan Manilow
Yi Deng
Rigel Swavely
Kyle Kastner
Tim Cooijmans
Jesse Engel
Musical expression requires control of both what notes are played, and how they are performed. Conventional audio synthesizers provide detai… (see more)led expressive controls, but at the cost of realism. Black-box neural audio synthesis and concatenative samplers can produce realistic audio, but have few mechanisms for control. In this work, we introduce MIDI-DDSP a hierarchical model of musical instruments that enables both realistic neural audio synthesis and detailed user control. Starting from interpretable Differentiable Digital Signal Processing (DDSP) synthesis parameters, we infer musical notes and high-level properties of their expressive performance (such as timbre, vibrato, dynamics, and articulation). This creates a 3-level hierarchy (notes, performance, synthesis) that affords individuals the option to intervene at each level, or utilize trained priors (performance given notes, synthesis given performance) for creative assistance. Through quantitative experiments and listening tests, we demonstrate that this hierarchy can reconstruct high-fidelity audio, accurately predict performance attributes for a note sequence, independently manipulate the attributes of a given performance, and as a complete system, generate realistic audio from a novel note sequence. By utilizing an interpretable hierarchy, with multiple levels of granularity, MIDI-DDSP opens the door to assistive tools to empower individuals across a diverse range of musical experience.
Invariant representation driven neural classifier for anti-QCD jet tagging
Taoli Cheng
Chunked Autoregressive GAN for Conditional Waveform Synthesis
Max Morrison
Rithesh Kumar
Kundan Kumar
Prem Seetharaman
Consistency-CAM: Towards Improved Weakly Supervised Semantic Segmentation.
Sai Rajeswar
Issam Hadj Laradji
Pau Rodriguez
David Vazquez
Learning to Dequantise with Truncated Flows
Shawn Tan
Chin-Wei Huang
Dequantisation is a general technique used for transforming data described by a discrete random variable x into a continuous (latent) random… (see more) variable z, for the purpose of it being modeled by likelihood-based density models. Dequantisation was first introduced in the context of ordinal data, such as image pixel values. However, when the data is categorical, the dequantisation scheme is not obvious. We learn such a dequantisation scheme q(z|x), using variational inference with TRUncated FLows (TRUFL) — a novel flow-based model that allows the dequantiser to have a learnable truncated support. Unlike previous work, the TRUFL dequantiser is (i) capable of embedding the data losslessly in certain cases, since the truncation allows the conditional distributions q(z|x) to have non-overlapping bounded supports, while being (ii) trainable with back-propagation. Addtionally, since the support of the marginal q(z) is bounded and the support of prior p(z) is not, we propose to renormalise the prior distribution over the support of q(z). We derive a lower bound for training, and propose a rejection sampling scheme to account for the invalid samples. Experimentally, we benchmark TRUFL on constrained generation tasks, and find that it outperforms prior approaches. In addition, we find that rejection sampling results in higher validity for the constrained problems.
Reincarnating Reinforcement Learning: Reusing Prior Computation to Accelerate Progress
Riemannian Diffusion Models
Chin-Wei Huang
Milad Aghajohari
Diffusion models are recent state-of-the-art methods for image generation and likelihood estimation. In this work, we generalize continuous-… (see more)time diffusion models to arbitrary Riemannian manifolds and derive a variational framework for likelihood estimation. Computationally, we propose new methods for computing the Riemannian divergence which is needed for likelihood estimation. Moreover, in generalizing the Euclidean case, we prove that maximizing this variational lower-bound is equivalent to Riemannian score matching. Empirically, we demonstrate the expressive power of Riemannian diffusion models on a wide spectrum of smooth manifolds, such as spheres, tori, hyperboloids, and orthogonal groups. Our proposed method achieves new state-of-the-art likelihoods on all benchmarks.
Unifying Likelihood-free Inference with Black-box Optimization and Beyond
Dinghuai Zhang
Jie Fu
Black-box optimization formulations for biological sequence design have drawn recent attention due to their promising potential impact on th… (see more)e pharmaceutical industry. In this work, we propose to unify two seemingly distinct worlds: likelihood-free inference and black-box optimization, under one probabilistic framework. In tandem, we provide a recipe for constructing various sequence design methods based on this framework. We show how previous optimization approaches can be"reinvented"in our framework, and further propose new probabilistic black-box optimization algorithms. Extensive experiments on sequence design application illustrate the benefits of the proposed methodology.
Unsupervised Dependency Graph Network
Yikang Shen
Shawn Tan
Peng Li
Jie Zhou
Recent work has identified properties of pretrained self-attention models that mirror those of dependency parse structures. In particular, s… (see more)ome self-attention heads correspond well to individual dependency types. Inspired by these developments, we propose a new competitive mechanism that encourages these attention heads to model different dependency relations. We introduce a new model, the Unsupervised Dependency Graph Network (UDGN), that can induce dependency structures from raw corpora and the masked language modeling task. Experiment results show that UDGN achieves very strong unsupervised dependency parsing performance without gold POS tags and any other external information. The competitive gated heads show a strong correlation with human-annotated dependency types. Furthermore, the UDGN can also achieve competitive performance on masked language modeling and sentence textual similarity tasks.
Multi-label Iterated Learning for Image Classification with Label Ambiguity
Sai Rajeswar
Pau Rodriguez
Soumye Singhal
David Vazquez
Transfer learning from large-scale pre-trained models has become essential for many computer vision tasks. Recent studies have shown that da… (see more)tasets like ImageNet are weakly labeled since images with multiple object classes present are assigned a single label. This ambiguity biases models towards a single prediction, which could result in the suppression of classes that tend to co-occur in the data. Inspired by language emergence literature, we propose multi-label iterated learning (MILe) to incorporate the inductive biases of multi-label learning from single labels using the framework of iterated learning. MILe is a simple yet effective procedure that builds a multi-label description of the image by propagating binary predictions through successive generations of teacher and student networks with a learning bottleneck. Experiments show that our approach exhibits systematic benefits on ImageNet accuracy as well as ReaL F1 score, which indicates that MILe deals better with label ambiguity than the standard training procedure, even when fine-tuning from self-supervised weights. We also show that MILe is effective reducing label noise, achieving state-of-the-art performance on real-world large-scale noisy data such as WebVision. Furthermore, MILe improves performance in class incremental settings such as IIRC and it is robust to distribution shifts. Code: https://github.com/rajeswar18/MILe