Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Investigating the Barriers to Physician Adoption of an Artificial Intelligence- Based Decision Support System in Emergency Care: An Interpretative Qualitative Study.
In this work, we perform authorship attri-bution on a new dataset of German news articles. We seek to classify over 3,700 articles to their … (voir plus)five corresponding authors, using four conventional machine learning approaches (na¨ıve Bayes, logistic regression, SVM and kNN) and a convolutional neural network. We analyze the effect of character and word n-grams on the prediction accuracy, as well as the influence of stop words, punctuation, numbers, and lowercasing when preprocessing raw text. The experiments show that higher order character n-grams (n = 5,6) perform better than lower orders and word n-grams slightly outperform those with characters. Combining both in fusion models further improves results up to 92% for SVM. A multilayer convolutional structure allows the CNN to achieve 90.5% accuracy. We found stop words and punctuation to be important features for author identification; removing them leads to a measurable decrease in performance. Finally, we evaluate the topic dependency of the algorithms by gradually replacing named entities, nouns, verbs and eventually all to-kens in the dataset according to their POS-tags.
Investigating the interconnections between human, technology and context in the implementation of a AI-based health information technology: a dynamic technological frame perspective
In this paper, we propose a Generative Translation Classification Network (GTCN) for improving visual classification accuracy in settings wh… (voir plus)ere classes are visually similar and data is scarce. For this purpose, we propose joint learning from a scratch to train a classifier and a generative stochastic translation network end-to-end. The translation network is used to perform on-line data augmentation across classes, whereas previous works have mostly involved domain adaptation. To help the model further benefit from this data-augmentation, we introduce an adaptive fade-in loss and a quadruplet loss. We perform experiments on multiple datasets to demonstrate the proposed method’s performance in varied settings. Of particular interest, training on 40% of the dataset is enough for our model to surpass the performance of baselines trained on the full dataset. When our architecture is trained on the full dataset, we achieve comparable performance with state-of-the-art methods despite using a light-weight architecture.
Generating high-quality text with sufficient diversity is essential for a wide range of Natural Language Generation (NLG) tasks. Maximum-Lik… (voir plus)elihood (MLE) models trained with teacher forcing have consistently been reported as weak baselines, where poor performance is attributed to exposure bias (Bengio et al., 2015; Ranzato et al., 2015); at inference time, the model is fed its own prediction instead of a ground-truth token, which can lead to accumulating errors and poor samples. This line of reasoning has led to an outbreak of adversarial based approaches for NLG, on the account that GANs do not suffer from exposure bias. In this work, we make several surprising observations which contradict common beliefs. First, we revisit the canonical evaluation framework for NLG, and point out fundamental flaws with quality-only evaluation: we show that one can outperform such metrics using a simple, well-known temperature parameter to artificially reduce the entropy of the model's conditional distributions. Second, we leverage the control over the quality / diversity trade-off given by this parameter to evaluate models over the whole quality-diversity spectrum and find MLE models constantly outperform the proposed GAN variants over the whole quality-diversity space. Our results have several implications: 1) The impact of exposure bias on sample quality is less severe than previously thought, 2) temperature tuning provides a better quality / diversity trade-off than adversarial training while being easier to train, easier to cross-validate, and less computationally expensive. Code to reproduce the experiments is available at github.com/pclucas14/GansFallingShort
Attention and self-attention mechanisms, inspired by cognitive processes, are now central to state-of-the-art deep learning on sequential ta… (voir plus)sks. However, most recent progress hinges on heuristic approaches that rely on considerable memory and computational resources that scale poorly. In this work, we propose a relevancy screening mechanism, inspired by the cognitive process of memory consolidation, that allows for a scalable use of sparse self-attention with recurrence. We use simple numerical experiments to demonstrate that this mechanism helps enable recurrent systems on generalization and transfer learning tasks. Based on our results, we propose a concrete direction of research to improve scalability and generalization of attentive recurrent networks.
Learning To Navigate The Synthetically Accessible Chemical Space Using Reinforcement Learning
Over the last decade, there has been significant progress in the field of machine learning for de novo drug design, particularly in deep gen… (voir plus)erative models. However, current generative approaches exhibit a significant challenge as they do not ensure that the proposed molecular structures can be feasibly synthesized nor do they provide the synthesis routes of the proposed small molecules, thereby seriously limiting their practical applicability. In this work, we propose a novel forward synthesis framework powered by reinforcement learning (RL) for de novo drug design, Policy Gradient for Forward Synthesis (PGFS), that addresses this challenge by embedding the concept of synthetic accessibility directly into the de novo drug design system. In this setup, the agent learns to navigate through the immense synthetically accessible chemical space by subjecting commercially available small molecule building blocks to valid chemical reactions at every time step of the iterative virtual multi-step synthesis process. The proposed environment for drug discovery provides a highly challenging test-bed for RL algorithms owing to the large state space and high-dimensional continuous action space with hierarchical actions. PGFS achieves state-of-the-art performance in generating structures with high QED and penalized clogP. Moreover, we validate PGFS in an in-silico proof-of-concept associated with three HIV targets. Finally, we describe how the end-to-end training conceptualized in this study represents an important paradigm in radically expanding the synthesizable chemical space and automating the drug discovery process.