Smart About Meds (SAM): a pilot randomized controlled trial of a mobile application to improve medication adherence following hospital discharge
Bettina Habib
Melissa Bustillo
Santiago Nicolas Marquez
Manish Thakur
Thai Tran
Daniala L Weir
Robyn Tamblyn
Structure-Aware Reinforcement Learning for Node-Overload Protection in Mobile Edge Computing
Anirudha Jitani
Zhongwen Zhu
Hatem Abou-Zeid
Emmanuel Thepie Fapi
Hakimeh Purmehdi
Mobile Edge Computing (MEC) involves placing computational capability and applications at the edge of the network, providing benefits such a… (voir plus)s reduced latency, reduced network congestion, and improved performance of applications. The performance and reliability of MEC degrades significantly when the edge server(s) in the cluster are overloaded. In this work, an adaptive admission control policy to prevent edge node from getting overloaded is presented. This approach is based on a recently-proposed low complexity RL (Reinforcement Learning) algorithm called SALMUT (Structure-Aware Learning for Multiple Thresholds), which exploits the structure of the optimal admission control policy in multi-class queues for an average-cost setting. We extend the framework to work for node overload-protection problem in a discounted-cost setting. The proposed solution is validated using several scenarios mimicking real-world deployments in two different settings — computer simulations and a docker testbed. Our empirical evaluations show that the total discounted cost incurred by SALMUT is similar to state-of-the-art deep RL algorithms such as PPO (Proximal Policy Optimization) and A2C (Advantage Actor Critic) but requires an order of magnitude less time to train, outputs easily interpretable policy, and can be deployed in an online manner.
Measures of balance in combinatorial optimization
Philippe Olivier
Andrea Lodi
G. Pesant
Measures of balance in combinatorial optimization
Philippe Olivier
Andrea Lodi
Gilles Pesant
Deep learning for AI
Yann LeCun
Geoffrey Hinton
Deep learning for AI
Yann LeCun
Geoffrey Hinton
Deep learning for AI
Yann LeCun
Geoffrey Hinton
How can neural networks learn the rich internal representations required for difficult tasks such as recognizing objects or understanding la… (voir plus)nguage?
Deep learning for AI
Yann LeCun
Geoffrey Hinton
Deep learning for AI
Yann LeCun
Geoffrey Hinton
Deep learning for AI
Yann LeCun
Geoffrey Hinton
How can neural networks learn the rich internal representations required for difficult tasks such as recognizing objects or understanding la… (voir plus)nguage?
Deep learning for AI
Yann LeCun
Geoffrey Hinton
Deep learning for AI
Yann LeCun
Geoffrey Hinton
How can neural networks learn the rich internal representations required for difficult tasks such as recognizing objects or understanding la… (voir plus)nguage?