Perspectives sur l’IA pour les responsables des politiques
Co-dirigé par Mila et le CIFAR, ce programme met en relation les décideur·euse·s avec des chercheur·euse·s de pointe en IA grâce à une combinaison de consultations ouvertes et d'exercices de test de faisabilité des politiques. La prochaine session aura lieu les 9 et 10 octobre.
Hugo Larochelle nommé directeur scientifique de Mila
Professeur associé à l’Université de Montréal et ancien responsable du laboratoire de recherche en IA de Google à Montréal, Hugo Larochelle est un pionnier de l’apprentissage profond et fait partie des chercheur·euses les plus respecté·es au Canada.
Mila organise son premier hackathon en informatique quantique le 21 novembre. Une journée unique pour explorer le prototypage quantique et l’IA, collaborer sur les plateformes de Quandela et IBM, et apprendre, échanger et réseauter dans un environnement stimulant au cœur de l’écosystème québécois en IA et en quantique.
Une nouvelle initiative pour renforcer les liens entre la communauté de recherche, les partenaires et les expert·e·s en IA à travers le Québec et le Canada, grâce à des rencontres et événements en présentiel axés sur l’adoption de l’IA dans l’industrie.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
The 5-year longitudinal diagnostic profile and health services utilization of patients treated with electroconvulsive therapy in Quebec: a population-based study
Accurate and automatic segmentation of intervertebral discs from medical images is a critical task for the assessment of spine-related disea… (voir plus)ses such as osteoporosis, vertebral fractures, and intervertebral disc herniation. To date, various approaches have been developed in the literature which routinely relies on detecting the discs as the primary step. A disadvantage of many cohort studies is that the localization algorithm also yields false-positive detections. In this study, we aim to alleviate this problem by proposing a novel U-Net-based structure to predict a set of candidates for intervertebral disc locations. In our design, we integrate the image shape information (image gradients) to encourage the model to learn rich and generic geometrical information. This additional signal guides the model to selectively emphasize the contextual representation and suppress the less discriminative features. On the post-processing side, to further decrease the false positive rate, we propose a permutation invariant 'look once' model, which accelerates the candidate recovery procedure. In comparison with previous studies, our proposed approach does not need to perform the selection in an iterative fashion. The proposed method was evaluated on the spine generic public multi-center dataset and demonstrated superior performance compared to previous work. We have provided the implementation code in https://github.com/rezazad68/intervertebral-lookonce
Video games represent a substantial and increasing share of the software market. However, their development is particularly challenging as i… (voir plus)t requires multi-faceted knowledge, which is not consolidated in computer science education yet. This article aims at defining a catalog of bad smells related to video game development. To achieve this goal, we mined discussions on general-purpose and video game-specific forums. After querying such a forum, we adopted an open coding strategy on a statistically significant sample of 572 discussions, stratified over different forums. As a result, we obtained a catalog of 28 bad smells, organized into five categories, covering problems related to game design and logic, physics, animation, rendering, or multiplayer. Then, we assessed the perceived relevance of such bad smells by surveying 76 game development professionals. The survey respondents agreed with the identified bad smells but also provided us with further insights about the discussed smells. Upon reporting results, we discuss bad smell examples, their consequences, as well as possible mitigation/fixing strategies and trade-offs to be pursued by developers. The catalog can be used not only as a guideline for developers and educators but also can pave the way toward better automated tool support for video game developers.
2022-09-15
ACM Transactions on Software Engineering and Methodology (publié)
BACKGROUND
Sexual orientation in humans represents a multilevel construct that is grounded in both neurobiological and environmental factors… (voir plus).
OBJECTIVE
Here, we bring to bear a machine learning approach to predict sexual orientation from gray matter volumes (GMVs) or resting-state functional connectivity (RSFC) in a cohort of 45 heterosexual and 41 homosexual participants.
METHODS
In both brain assessments, we used penalized logistic regression models and nonparametric permutation.
RESULTS
We found an average accuracy of 62% (±6.72) for predicting sexual orientation based on GMV and an average predictive accuracy of 92% (±9.89) using RSFC. Regions in the precentral gyrus, precuneus and the prefrontal cortex were significantly informative for distinguishing heterosexual from homosexual participants in both the GMV and RSFC settings.
CONCLUSIONS
These results indicate that, aside from self-reports, RSFC offers neurobiological information valuable for highly accurate prediction of sexual orientation. We demonstrate for the first time that sexual orientation is reflected in specific patterns of RSFC, which enable personalized, brain-based predictions of this highly complex human trait. While these results are preliminary, our neurobiologically based prediction framework illustrates the great value and potential of RSFC for revealing biologically meaningful and generalizable predictive patterns in the human brain.
The ability to accelerate the design of biological sequences can have a substantial impact on the progress of the medical field. The problem… (voir plus) can be framed as a global optimization problem where the objective is an expensive black-box function such that we can query large batches restricted with a limitation of a low number of rounds. Bayesian Optimization is a principled method for tackling this problem. However, the astronomically large state space of biological sequences renders brute-force iterating over all possible sequences infeasible. In this paper, we propose MetaRLBO where we train an autoregressive generative model via Meta-Reinforcement Learning to propose promising sequences for selection via Bayesian Optimization. We pose this problem as that of finding an optimal policy over a distribution of MDPs induced by sampling subsets of the data acquired in the previous rounds. Our in-silico experiments show that meta-learning over such ensembles provides robustness against reward misspecification and achieves competitive results compared to existing strong baselines.
Rapidly Inferring Personalized Neurostimulation Parameters with Meta-Learning: A Case Study of Individualized Fiber Recruitment in Vagus Nerve Stimulation