Implementing automation in deep brain stimulation: has the time come?
Alfonso Fasano
Improving Passage Retrieval with Zero-Shot Question Generation
Devendra Singh Sachan
Mike Lewis
Mandar Joshi
Armen Aghajanyan
Wen-tau Yih
Luke Zettlemoyer
In-Processing Fairness Improvement Methods for Regression Data-Driven Building Models: Achieving Uniform Energy Prediction
Ying Sun
Fariborz Haghighat
A Multifaceted Framework to Evaluate Evasion, Content Preservation, and Misattribution in Authorship Obfuscation Techniques
Malik H. Altakrori
Thomas Scialom
QRelScore: Better Evaluating Generated Questions with Deeper Understanding of Context-aware Relevance
Xiaoqiang Wang
Siliang Tang
Lingfei Wu
Existing metrics for assessing question generation not only require costly human reference but also fail to take into account the input cont… (voir plus)ext of generation, rendering the lack of deep understanding of the relevance between the generated questions and input contexts. As a result, they may wrongly penalize a legitimate and reasonable candidate question when it (1) involves complicated reasoning with the context or (2) can be grounded by multiple evidences in the context.In this paper, we propose QRelScore, a context-aware Relevance evaluation metric for Question Generation.Based on off-the-shelf language models such as BERT and GPT2, QRelScore employs both word-level hierarchical matching and sentence-level prompt-based generation to cope with the complicated reasoning and diverse generation from multiple evidences, respectively.Compared with existing metrics, our experiments demonstrate that QRelScore is able to achieve a higher correlation with human judgments while being much more robust to adversarial samples.
Reference panel guided topological structure annotation of Hi-C data
Yanlin Zhang
Structure-Aware Reinforcement Learning for Node-Overload Protection in Mobile Edge Computing
Anirudha Jitani
Zhongwen Zhu
Hatem Abou-Zeid
Emmanuel Thepie Fapi
Hakimeh Purmehdi
Mobile Edge Computing (MEC) involves placing computational capability and applications at the edge of the network, providing benefits such a… (voir plus)s reduced latency, reduced network congestion, and improved performance of applications. The performance and reliability of MEC degrades significantly when the edge server(s) in the cluster are overloaded. In this work, an adaptive admission control policy to prevent edge node from getting overloaded is presented. This approach is based on a recently-proposed low complexity RL (Reinforcement Learning) algorithm called SALMUT (Structure-Aware Learning for Multiple Thresholds), which exploits the structure of the optimal admission control policy in multi-class queues for an average-cost setting. We extend the framework to work for node overload-protection problem in a discounted-cost setting. The proposed solution is validated using several scenarios mimicking real-world deployments in two different settings — computer simulations and a docker testbed. Our empirical evaluations show that the total discounted cost incurred by SALMUT is similar to state-of-the-art deep RL algorithms such as PPO (Proximal Policy Optimization) and A2C (Advantage Actor Critic) but requires an order of magnitude less time to train, outputs easily interpretable policy, and can be deployed in an online manner.
The Emergence of Argument Structure in Artificial Languages
Tom Bosc
Abstract Computational approaches to the study of language emergence can help us understand how natural languages are shaped by cognitive an… (voir plus)d sociocultural factors. Previous work focused on tasks where agents refer to a single entity. In contrast, we study how agents predicate, that is, how they express that some relation holds between several entities. We introduce a setup where agents talk about a variable number of entities that can be partially observed by the listener. In the presence of a least-effort pressure, they tend to discuss only entities that are not observed by the listener. Thus we can obtain artificial phrases that denote a single entity, as well as artificial sentences that denote several entities. In natural languages, if we ignore the verb, phrases are usually concatenated, either in a specific order or by adding case markers to form sentences. Our setup allows us to quantify how much this holds in emergent languages using a metric we call concatenability. We also measure transitivity, which quantifies the importance of word order. We demonstrate the usefulness of this new setup and metrics for studying factors that influence argument structure. We compare agents having access to input representations structured into pre-segmented objects with properties, versus unstructured representations. Our results indicate that the awareness of object structure yields a more natural sentence organization.
Using incorpoRATE to examine clinician willingness to engage in shared decision making: A study of Family Medicine residents.
Roland Grad
A. Sandhu
Michael Ferrante
Vinita D'souza
Lily Puterman-Salzman
Gabrielle Stevens
G. Elwyn
VDGraph2Vec: Vulnerability Detection in Assembly Code using Message Passing Neural Networks
Ashita Diwan
Miles Q. Li
Software vulnerability detection is one of the most challenging tasks faced by reverse engineers. Recently, vulnerability detection has rece… (voir plus)ived a lot of attention due to a drastic increase in the volume and complexity of software. Reverse engineering is a time-consuming and labor-intensive process for detecting malware and software vulnerabilities. However, with the advent of deep learning and machine learning, it has become possible for researchers to automate the process of identifying potential security breaches in software by developing more intelligent technologies. In this research, we propose VDGraph2Vec, an automated deep learning method to generate representations of assembly code for the task of vulnerability detection. Previous approaches failed to attend to topological characteristics of assembly code while discovering the weakness in the software. VDGraph2Vec embeds the control flow and semantic information of assembly code effectively using the expressive capabilities of message passing neural networks and the RoBERTa model. Our model is able to learn the important features that help distinguish between vulnerable and non-vulnerable software. We carry out our experimental analysis for performance benchmark on three of the most common weaknesses and demonstrate that our model can identify vulnerabilities with high accuracy and outperforms the current state-of-the-art binary vulnerability detection models.
Bayesian Dynamic Causal Discovery
Alexander Tong
Lazar Atanackovic
Jason Hartford
Learning the causal structure of observable variables is a central focus for scientific discovery. Bayesian causal discovery methods tackle … (voir plus)this problem by learning a posterior over the set of admissible graphs that are equally likely given our priors and observations. Existing methods primarily consider observations from static systems and assume the underlying causal structure takes the form of a directed acyclic graph (DAG). In settings with dynamic feedback mechanisms that regulate the trajectories of individual variables, this acyclicity assumption fails unless we account for time. We treat causal discovery in the unrolled causal graph as a problem of sparse identification of a dynamical system. This imposes a natural temporal causal order between variables and captures cyclic feedback loops through time. Under this lens, we propose a new framework for Bayesian causal discovery for dynamical systems and present a novel generative flow network architecture (Dyn-GFN) tailored for this task. Dyn-GFN imposes an edge-wise sparse prior to sequentially build a k -sparse causal graph. Through evaluation on temporal data, our results show that the posterior learned with Dyn-GFN yields improved Bayes coverage of admissible causal structures relative to state of the art Bayesian causal discovery methods.
CLIP-Mesh: Generating textured meshes from text using pretrained image-text models
Nasir M. Khalid
Tianhao Xie
Tiberiu Popa