Perspectives sur l’IA pour les responsables des politiques
Co-dirigé par Mila et le CIFAR, ce programme met en relation les décideur·euse·s avec des chercheur·euse·s de pointe en IA grâce à une combinaison de consultations ouvertes et d'exercices de test de faisabilité des politiques. La prochaine session aura lieu les 9 et 10 octobre.
Hugo Larochelle nommé directeur scientifique de Mila
Professeur associé à l’Université de Montréal et ancien responsable du laboratoire de recherche en IA de Google à Montréal, Hugo Larochelle est un pionnier de l’apprentissage profond et fait partie des chercheur·euses les plus respecté·es au Canada.
Mila organise son premier hackathon en informatique quantique le 21 novembre. Une journée unique pour explorer le prototypage quantique et l’IA, collaborer sur les plateformes de Quandela et IBM, et apprendre, échanger et réseauter dans un environnement stimulant au cœur de l’écosystème québécois en IA et en quantique.
Une nouvelle initiative pour renforcer les liens entre la communauté de recherche, les partenaires et les expert·e·s en IA à travers le Québec et le Canada, grâce à des rencontres et événements en présentiel axés sur l’adoption de l’IA dans l’industrie.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
An Exact Framework for Solving the Space-Time Dependent TSP
Many real-world scenarios involve solving bi-level optimization problems in which there is an outer discrete optimization problem, and an in… (voir plus)ner problem involving expensive or black-box computation. This arises in space-time dependent variants of the Traveling Salesman Problem, such as when planning space missions that visit multiple astronomical objects. Planning these missions presents significant challenges due to the constant relative motion of the objects involved. There is an outer combinatorial problem of finding the optimal order to visit the objects and an inner optimization problem that requires finding the optimal departure time and trajectory to travel between each pair of objects. The constant motion of the objects complicates the inner problem, making it computationally expensive. This paper introduces a novel framework utilizing decision diagrams (DDs) and a DD-based branch-and-bound technique, Peel-and-Bound, to achieve exact solutions for such bi-level optimization problems, assuming sufficient inner problem optimizer quality. The framework leverages problem-specific knowledge to expedite search processes and minimize the number of expensive evaluations required. As a case study, we apply this framework to the Asteroid Routing Problem (ARP), a benchmark problem in global trajectory optimization. Experimental results demonstrate the framework's scalability and ability to generate robust heuristic solutions for ARP instances. Many of these solutions are exact, contingent on the assumed quality of the inner problem's optimizer.
Automatic Head and Neck Tumor segmentation and outcome prediction relying on FDG-PET/CT images: Findings from the second edition of the HECKTOR challenge
Fine-tuning language models~(LMs) on human-generated data remains a prevalent practice. However, the performance of such models is often lim… (voir plus)ited by the quantity and diversity of high-quality human data. In this paper, we explore whether we can go beyond human data on tasks where we have access to scalar feedback, for example, on math problems where one can verify correctness. To do so, we investigate a simple self-training method based on expectation-maximization, which we call ReST
Augmenting pretrained language models with retrievers to select the supporting documents has shown promise in effectively solving common NLP… (voir plus) problems, including language modeling and question answering, in an interpretable way. In this paper, we first study the strengths and weaknesses of different retriever-augmented language models (REALM,
2023-12-01
Findings of the Association for Computational Linguistics: EMNLP 2023 (publié)