Marc Bellemare
Beyond Predictive Algorithms in Child Welfare
Erina Seh-Young Moon
Erin Moon
Devansh Saxena
Shion Guha
Raidar: geneRative AI Detection viA Rewriting
Chengzhi Mao
Carl Vondrick
Hao Wang
Junfeng Yang
We find that large language models (LLMs) are more likely to modify human-written text than AI-generated text when tasked with rewriting. Th… (voir plus)is tendency arises because LLMs often perceive AI-generated text as high-quality, leading to fewer modifications. We introduce a method to detect AI-generated content by prompting LLMs to rewrite text and calculating the editing distance of the output. We dubbed our geneRative AI Detection viA Rewriting method Raidar. Raidar significantly improves the F1 detection scores of existing AI content detection models -- both academic and commercial -- across various domains, including News, creative writing, student essays, code, Yelp reviews, and arXiv papers, with gains of up to 29 points. Operating solely on word symbols without high-dimensional features, our method is compatible with black box LLMs, and is inherently robust on new content. Our results illustrate the unique imprint of machine-generated text through the lens of the machines themselves.
Raidar: geneRative AI Detection viA Rewriting
Chengzhi Mao
Carl Vondrick
Hao Wang
Junfeng Yang
We find that large language models (LLMs) are more likely to modify human-written text than AI-generated text when tasked with rewriting. Th… (voir plus)is tendency arises because LLMs often perceive AI-generated text as high-quality, leading to fewer modifications. We introduce a method to detect AI-generated content by prompting LLMs to rewrite text and calculating the editing distance of the output. We dubbed our geneRative AI Detection viA Rewriting method Raidar. Raidar significantly improves the F1 detection scores of existing AI content detection models -- both academic and commercial -- across various domains, including News, creative writing, student essays, code, Yelp reviews, and arXiv papers, with gains of up to 29 points. Operating solely on word symbols without high-dimensional features, our method is compatible with black box LLMs, and is inherently robust on new content. Our results illustrate the unique imprint of machine-generated text through the lens of the machines themselves.
Visibility into AI Agents
Alan Chan
Carson Ezell
Max Kaufmann
Kevin Wei
Lewis Hammond
Herbie Bradley
Emma Bluemke
Nitarshan Rajkumar
Noam Kolt
Lennart Heim
Markus Anderljung
Increased delegation of commercial, scientific, governmental, and personal activities to AI agents—systems capable of pursuing complex goa… (voir plus)ls with limited supervision—may exacerbate existing societal risks and introduce new risks. Understanding and mitigating these risks involves critically evaluating existing governance structures, revising and adapting these structures where needed, and ensuring accountability of key stakeholders. Information about where, why, how, and by whom certain AI agents are used, which we refer to as visibility, is critical to these objectives. In this paper, we assess three categories of measures to increase visibility into AI agents: agent identifiers, real-time monitoring, and activity logging. For each, we outline potential implementations that vary in intrusiveness and informativeness. We analyze how the measures apply across a spectrum of centralized through decentralized deployment contexts, accounting for various actors in the supply chain including hardware and software service providers. Finally, we discuss the implications of our measures for privacy and concentration of power. Further work into understanding the measures and mitigating their negative impacts can help to build a foundation for the governance of AI agents.
Visibility into AI Agents
Alan Chan
Carson Ezell
Max Kaufmann
Kevin Wei
Lewis Hammond
Herbie Bradley
Emma Bluemke
Nitarshan Rajkumar
Noam Kolt
Lennart Heim
Markus Anderljung
Increased delegation of commercial, scientific, governmental, and personal activities to AI agents—systems capable of pursuing complex goa… (voir plus)ls with limited supervision—may exacerbate existing societal risks and introduce new risks. Understanding and mitigating these risks involves critically evaluating existing governance structures, revising and adapting these structures where needed, and ensuring accountability of key stakeholders. Information about where, why, how, and by whom certain AI agents are used, which we refer to as visibility, is critical to these objectives. In this paper, we assess three categories of measures to increase visibility into AI agents: agent identifiers, real-time monitoring, and activity logging. For each, we outline potential implementations that vary in intrusiveness and informativeness. We analyze how the measures apply across a spectrum of centralized through decentralized deployment contexts, accounting for various actors in the supply chain including hardware and software service providers. Finally, we discuss the implications of our measures for privacy and concentration of power. Further work into understanding the measures and mitigating their negative impacts can help to build a foundation for the governance of AI agents.
Visibility into AI Agents
Alan Chan
Carson Ezell
Max Kaufmann
Kevin Wei
Lewis Hammond
Herbie Bradley
Emma Bluemke
Nitarshan Rajkumar
Noam Kolt
Lennart Heim
Markus Anderljung
Increased delegation of commercial, scientific, governmental, and personal activities to AI agents—systems capable of pursuing complex goa… (voir plus)ls with limited supervision—may exacerbate existing societal risks and introduce new risks. Understanding and mitigating these risks involves critically evaluating existing governance structures, revising and adapting these structures where needed, and ensuring accountability of key stakeholders. Information about where, why, how, and by whom certain AI agents are used, which we refer to as visibility, is critical to these objectives. In this paper, we assess three categories of measures to increase visibility into AI agents: agent identifiers, real-time monitoring, and activity logging. For each, we outline potential implementations that vary in intrusiveness and informativeness. We analyze how the measures apply across a spectrum of centralized through decentralized deployment contexts, accounting for various actors in the supply chain including hardware and software service providers. Finally, we discuss the implications of our measures for privacy and concentration of power. Further work into understanding the measures and mitigating their negative impacts can help to build a foundation for the governance of AI agents.
Connectome-based reservoir computing with the conn2res toolbox
Laura E. Suárez
Agoston Mihalik
Filip Milisav
Kenji Marshall
Mingze Li
Petra E. Vértes
Bratislav Mišić
RapidBrachyTG43: A Geant4‐based TG‐43 parameter and dose calculation module for brachytherapy dosimetry
Jonathan Kalinowski
Transnational conservation to anticipate future plant shifts in Europe
Yohann Chauvier-Mendes
Peter H. Verburg
Dirk N. Karger
Loïc Pellissier
Sébastien Lavergne
Niklaus E. Zimmermann
Wilfried Thuiller
Transnational conservation to anticipate future plant shifts in Europe
Yohann Chauvier-Mendes
Peter H. Verburg
Dirk N. Karger
Loïc Pellissier
Sébastien Lavergne
Niklaus E. Zimmermann
Wilfried Thuiller
Transnational conservation to anticipate future plant shifts in Europe
Yohann Chauvier-Mendes
Peter H. Verburg
Dirk N. Karger
Loïc Pellissier
Sébastien Lavergne
Niklaus E. Zimmermann
Wilfried Thuiller