Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
Foundational Challenges in Assuring Alignment and Safety of Large Language Models
This work identifies 18 foundational challenges in assuring the alignment and safety of large language models (LLMs). These challenges are o… (voir plus)rganized into three different categories: scientific understanding of LLMs, development and deployment methods, and sociotechnical challenges. Based on the identified challenges, we pose
This work identifies 18 foundational challenges in assuring the alignment and safety of large language models (LLMs). These challenges are o… (voir plus)rganized into three different categories: scientific understanding of LLMs, development and deployment methods, and sociotechnical challenges. Based on the identified challenges, we pose
This work identifies 18 foundational challenges in assuring the alignment and safety of large language models (LLMs). These challenges are o… (voir plus)rganized into three different categories: scientific understanding of LLMs, development and deployment methods, and sociotechnical challenges. Based on the identified challenges, we pose
This work identifies 18 foundational challenges in assuring the alignment and safety of large language models (LLMs). These challenges are o… (voir plus)rganized into three different categories: scientific understanding of LLMs, development and deployment methods, and sociotechnical challenges. Based on the identified challenges, we pose
This work identifies 18 foundational challenges in assuring the alignment and safety of large language models (LLMs). These challenges are o… (voir plus)rganized into three different categories: scientific understanding of LLMs, development and deployment methods, and sociotechnical challenges. Based on the identified challenges, we pose
Weakly Supervised Object Localization (WSOL) allows training deep learning models for classification and localization (LOC) using only globa… (voir plus)l class-level labels. The absence of bounding box (bbox) supervision during training raises challenges in the literature for hyper-parameter tuning, model selection, and evaluation. WSOL methods rely on a validation set with bbox annotations for model selection, and a test set with bbox annotations for threshold estimation for producing bboxes from localization maps. This approach, however, is not aligned with the WSOL setting as these annotations are typically unavailable in real-world scenarios. Our initial empirical analysis shows a significant decline in LOC performance when model selection and threshold estimation rely solely on class labels and the image itself, respectively, compared to using manual bbox annotations. This highlights the importance of incorporating bbox labels for optimal model performance. In this paper, a new WSOL evaluation protocol is proposed that provides LOC information without the need for manual bbox annotations. In particular, we generated noisy pseudo-boxes from a pretrained off-the-shelf region proposal method such as Selective Search, CLIP, and RPN for model selection. These bboxes are also employed to estimate the threshold from LOC maps, circumventing the need for test-set bbox annotations. Our experiments with several WSOL methods on ILSVRC and CUB datasets show that using the proposed pseudo-bboxes for validation facilitates the model selection and threshold estimation, with LOC performance comparable to those selected using GT bboxes on the validation set and threshold estimation on the test set. It also outperforms models selected using class-level labels, and then dynamically thresholded based solely on LOC maps.
Prominent AI experts have suggested that companies developing high-risk AI systems should be required to show that such systems are safe bef… (voir plus)ore they can be developed or deployed. The goal of this paper is to expand on this idea and explore its implications for risk management. We argue that entities developing or deploying high-risk AI systems should be required to present evidence of affirmative safety: a proactive case that their activities keep risks below acceptable thresholds. We begin the paper by highlighting global security risks from AI that have been acknowledged by AI experts and world governments. Next, we briefly describe principles of risk management from other high-risk fields (e.g., nuclear safety). Then, we propose a risk management approach for advanced AI in which model developers must provide evidence that their activities keep certain risks below regulator-set thresholds. As a first step toward understanding what affirmative safety cases should include, we illustrate how certain kinds of technical evidence and operational evidence can support an affirmative safety case. In the technical section, we discuss behavioral evidence (evidence about model outputs), cognitive evidence (evidence about model internals), and developmental evidence (evidence about the training process). In the operational section, we offer examples of organizational practices that could contribute to affirmative safety cases: information security practices, safety culture, and emergency response capacity. Finally, we briefly compare our approach to the NIST AI Risk Management Framework. Overall, we hope our work contributes to ongoing discussions about national and global security risks posed by AI and regulatory approaches to address these risks.
Prominent AI experts have suggested that companies developing high-risk AI systems should be required to show that such systems are safe bef… (voir plus)ore they can be developed or deployed. The goal of this paper is to expand on this idea and explore its implications for risk management. We argue that entities developing or deploying high-risk AI systems should be required to present evidence of affirmative safety: a proactive case that their activities keep risks below acceptable thresholds. We begin the paper by highlighting global security risks from AI that have been acknowledged by AI experts and world governments. Next, we briefly describe principles of risk management from other high-risk fields (e.g., nuclear safety). Then, we propose a risk management approach for advanced AI in which model developers must provide evidence that their activities keep certain risks below regulator-set thresholds. As a first step toward understanding what affirmative safety cases should include, we illustrate how certain kinds of technical evidence and operational evidence can support an affirmative safety case. In the technical section, we discuss behavioral evidence (evidence about model outputs), cognitive evidence (evidence about model internals), and developmental evidence (evidence about the training process). In the operational section, we offer examples of organizational practices that could contribute to affirmative safety cases: information security practices, safety culture, and emergency response capacity. Finally, we briefly compare our approach to the NIST AI Risk Management Framework. Overall, we hope our work contributes to ongoing discussions about national and global security risks posed by AI and regulatory approaches to address these risks.
This paper describes the Ubenwa CryCeleb dataset - a labeled collection of infant cries - and the accompanying CryCeleb 2023 task, which is … (voir plus)a public speaker verification challenge based on cry sounds. We released more than 6 hours of manually segmented cry sounds from 786 newborns for academic use, aiming to encourage research in infant cry analysis. The inaugural public competition attracted 59 participants, 11 of whom improved the baseline performance. The top-performing system achieved a significant improvement scoring 25.8% equal error rate, which is still far from the performance of state-of-the-art adult speaker verification systems. Therefore, we believe there is room for further research on this dataset, potentially extending beyond the verification task.
2024-04-14
ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (publié)
Directed graphs are a natural model for many phenomena, in particular scientific knowledge graphs such as molecular interaction or chemical … (voir plus)reaction networks that define cellular signaling relationships. In these situations, source nodes typically have distinct biophysical properties from sinks. Due to their ordered and unidirectional relationships, many such networks also have hierarchical and multiscale structure. However, the majority of methods performing node- and edge-level tasks in machine learning do not take these properties into account, and thus have not been leveraged effectively for scientific tasks such as cellular signaling network inference. We propose a new framework called Directed Scattering Autoencoder (DSAE) which uses a directed version of a geometric scattering transform, combined with the non-linear dimensionality reduction properties of an autoencoder and the geometric properties of the hyperbolic space to learn latent hierarchies. We show this method outperforms numerous others on tasks such as embedding directed graphs and learning cellular signaling networks.
2024-04-14
ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (publié)