Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
This document explores the advantages of integrating open source software and practices in managing a scientific lab, emphasizing reproducib… (voir plus)ility and the avoidance of pitfalls. It details practical applications from website management using GitHub Pages to organizing datasets in compliance with BIDS standards, highlights the importance of continuous testing for data integrity, IT management through Ansible for efficient system configuration, open source software development. The broader goal is to promote transparent, reproducible science by adopting open source tools. This approach not only saves time but exposes students to best practices, enhancing the transparency and reproducibility of scientific research.
This document explores the advantages of integrating open source software and practices in managing a scientific lab, emphasizing reproducib… (voir plus)ility and the avoidance of pitfalls. It details practical applications from website management using GitHub Pages to organizing datasets in compliance with BIDS standards, highlights the importance of continuous testing for data integrity, IT management through Ansible for efficient system configuration, open source software development. The broader goal is to promote transparent, reproducible science by adopting open source tools. This approach not only saves time but exposes students to best practices, enhancing the transparency and reproducibility of scientific research.
This document explores the advantages of integrating open source software and practices in managing a scientific lab, emphasizing reproducib… (voir plus)ility and the avoidance of pitfalls. It details practical applications from website management using GitHub Pages to organizing datasets in compliance with BIDS standards, highlights the importance of continuous testing for data integrity, IT management through Ansible for efficient system configuration, open source software development. The broader goal is to promote transparent, reproducible science by adopting open source tools. This approach not only saves time but exposes students to best practices, enhancing the transparency and reproducibility of scientific research.
Evaluating outputs of large language models (LLMs) is challenging, requiring making -- and making sense of -- many responses. Yet tools that… (voir plus) go beyond basic prompting tend to require knowledge of programming APIs, focus on narrow domains, or are closed-source. We present ChainForge, an open-source visual toolkit for prompt engineering and on-demand hypothesis testing of text generation LLMs. ChainForge provides a graphical interface for comparison of responses across models and prompt variations. Our system was designed to support three tasks: model selection, prompt template design, and hypothesis testing (e.g., auditing). We released ChainForge early in its development and iterated on its design with academics and online users. Through in-lab and interview studies, we find that a range of people could use ChainForge to investigate hypotheses that matter to them, including in real-world settings. We identify three modes of prompt engineering and LLM hypothesis testing: opportunistic exploration, limited evaluation, and iterative refinement.
2024-05-11
Proceedings of the CHI Conference on Human Factors in Computing Systems (publié)
Social robotics researchers are increasingly interested in multi-party trained conversational agents. With a growing demand for real-world e… (voir plus)valuations, our study presents Large Language Models (LLMs) deployed in a month-long live show at the Edinburgh Festival Fringe. This case study investigates human improvisers co-creating with conversational agents in a professional theatre setting. We explore the technical capabilities and constraints of on-the-spot multi-party dialogue, providing comprehensive insights from both audience and performer experiences with AI on stage. Our human-in-the-loop methodology underlines the challenges of these LLMs in generating context-relevant responses, stressing the user interface's crucial role. Audience feedback indicates an evolving interest for AI-driven live entertainment, direct human-AI interaction, and a diverse range of expectations about AI's conversational competence and utility as a creativity support tool. Human performers express immense enthusiasm, varied satisfaction, and the evolving public opinion highlights mixed emotions about AI's role in arts.
PURPOSE
To address the limitations of spinal cord imaging at ultra-high field (UHF) due to time-consuming parallel transmit (pTx) adjustment… (voir plus)s. This study introduces calibration-free offline computed universal shim modes that can be applied seamlessly for different pTx RF coils and spinal cord target regions, substantially enhancing spinal cord imaging efficiency at UHF.
METHODS
A library of channel-wise relative B 1 +