Le Studio d'IA pour le climat de Mila vise à combler l’écart entre la technologie et l'impact afin de libérer le potentiel de l'IA pour lutter contre la crise climatique rapidement et à grande échelle.
Le programme a récemment publié sa première note politique, intitulée « Considérations politiques à l’intersection des technologies quantiques et de l’intelligence artificielle », réalisée par Padmapriya Mohan.
Hugo Larochelle nommé directeur scientifique de Mila
Professeur associé à l’Université de Montréal et ancien responsable du laboratoire de recherche en IA de Google à Montréal, Hugo Larochelle est un pionnier de l’apprentissage profond et fait partie des chercheur·euses les plus respecté·es au Canada.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Representation learning methods are an important tool for addressing the challenges posed by complex observations spaces in sequential decis… (voir plus)ion making problems. Recently, many methods have used a wide variety of types of approaches for learning meaningful state representations in reinforcement learning, allowing better sample efficiency, generalization, and performance. This survey aims to provide a broad categorization of these methods within a model-free online setting, exploring how they tackle the learning of state representations differently. We categorize the methods into six main classes, detailing their mechanisms, benefits, and limitations. Through this taxonomy, our aim is to enhance the understanding of this field and provide a guide for new researchers. We also discuss techniques for assessing the quality of representations, and detail relevant future directions.
Cooperation between people is not always obvious. Sometimes we benefit from actions that others have taken even when we are unaware that the… (voir plus)y took those actions. For example, if your neighbor chooses not to take a parking spot in front of your house when you are not there, you can benefit, even without being aware that they took this action. These “hidden gifts” represent an interesting challenge for multi-agent reinforcement learning (MARL), since assigning credit to your own actions correctly when the beneficial actions of others are hidden is non-trivial. Here, we study the impact of hidden gifts with a very simple MARL task. In this task, agents in a grid-world environment have individual doors to unlock in order to obtain individual rewards. As well, if all the agents unlock their door the group receives a larger collective reward. However, there is only one key for all of the doors, such that the collective reward can only be obtained when the agents drop the key for others after they use it. Notably, there is nothing to indicate to an agent that the other agents have dropped the key, thus the act of dropping the key for others is a “hidden gift”. We show that several different state-of-the-art RL algorithms, including MARL algorithms, fail to learn how to obtain the collective reward in this simple task. Interestingly, we find that independent model-free policy gradient agents can solve the task when we provide them with information about their action history, but MARL agents still cannot solve the task with action history. Finally, we derive a correction term for these independent agents, inspired by learning aware approaches, which reduces the variance in learning and helps them to converge to collective success more reliably. These results show how credit assignment in multi-agent settings can be particularly challenging in the presence of “hidden gifts”, and demonstrate that learning awareness can benefit these settings
Addressing climate change requires global coordination, yet rational economic actors often prioritize immediate gains over collective welfar… (voir plus)e, resulting in social dilemmas. InvestESG is a recently proposed multi-agent simulation that captures the dynamic interplay between investors and companies under climate risk. We provide a formal characterization of the conditions under which InvestESG exhibits an intertemporal social dilemma, deriving theoretical thresholds at which individual incentives diverge from collective welfare. Building on this, we apply Advantage Alignment, a scalable opponent shaping algorithm shown to be effective in general-sum games, to influence agent learning in InvestESG. We offer theoretical insights into why Advantage Alignment systematically favors socially beneficial equilibria by biasing learning dynamics toward cooperative outcomes. Our results demonstrate that strategically shaping the learning processes of economic agents can result in better outcomes that could inform policy mechanisms to better align market incentives with long-term sustainability goals.
Proto-value functions (PVFs) introduced Laplacian embeddings as an effective feature basis for value-function approximation; however, their … (voir plus)utility remained limited to small, fully known state spaces. Recent work has scaled Laplacian embeddings to high-dimensional inputs, using them for reward shaping and option discovery in goal-directed tasks, yet only as auxiliary signals, rather than directly using them as features for value functions. In this paper, we learn Laplacian eigenvectors online and employ them as features for Q-learning in 23 Atari games. We empirically demonstrate that these online–learned embeddings substantially improve model-free RL in large, high-dimensional domains. We demonstrate that enriching state representations with action embeddings yields additional gains under both behavior-policy and uniform-random policies. Additionally, we introduce the Fusion architecture, which augments the representation with useful inductive bias at the embedding level. To assess the usefulness of each embedding used in the Fusion architecture, we use Shapley values analysis.
In recent years, with the increase in the compute power of GPUs, parallelized data collection has become the dominant approach for training … (voir plus)reinforcement learning (RL) agents. Proximal Policy Optimization (PPO) is one of the widely-used on-policy methods for training RL agents. In this paper, we focus on the training behavior of PPO-Clip with the increase in the number of parallel environments. In particular, we show that as we increase the amount of data used to train PPO-Clip, the optimized policy would converge to a fixed distribution. We use the results to study the behavior of PPO-Clip in two case studies: the effect of change in the minibatch size and the effect of increase in the number of parallel environments versus the increase in the rollout lengths. The experiments show that settings with high-return PPO runs result in slower convergence to the fixed-distribution and higher consecutive KL divergence changes. Our results aim to offer a better understanding for the prediction of the performance of PPO with the scaling of the parallel environments.