Publications

Cross-lingual Open-Retrieval Question Answering for African Languages
Odunayo Ogundepo
Tajuddeen Gwadabe
Clara E. Rivera
Jonathan H. Clark
Sebastian Ruder
Bonaventure F. P. Dossou
Abdou Aziz DIOP
Claytone Sikasote
Gilles Q. Hacheme
Happy Buzaaba
Ignatius Majesty Ezeani
Rooweither Mabuya
Salomey Osei
Chris Emezue
Albert Njoroge Kahira
Shamsuddeen Hassan Muhammad
Akintunde Oladipo
Abraham Toluwase Owodunni
Atnafu Lambebo Tonja … (voir 24 de plus)
Iyanuoluwa Shode
Akari Asai
Aremu Anuoluwapo
Ayodele Awokoya
Bernard Opoku
Chiamaka Ijeoma Chukwuneke
Christine Mwase
Clemencia Siro
Stephen Arthur
Tunde Oluwaseyi Ajayi
V. Otiende
Andre Niyongabo Rubungo
B. Sinkala
Daniel A. Ajisafe
Emeka Onwuegbuzia
Falalu Lawan
Ibrahim Ahmad
Jesujoba Alabi
CHINEDU EMMANUEL MBONU
Mofetoluwa Adeyemi
Mofya Phiri
Orevaoghene Ahia
Ruqayya Nasir Iro
Sonia Adhiambo
Current AI applications in neurology: Brain imaging
Joshua D. Durso-Finley
Jean-Pierre R. Falet
Raghav Mehta
Douglas Arnold
Nick Pawlowski
From physics to sentience: Deciphering the semantics of the free-energy principle and evaluating its claims: Comment on "Path integrals, particular kinds, and strange things" by Karl Friston et al.
Zahra Sheikhbahaee
Adam Safron
Casper Hesp
Large language models: What could they do for neurology?
A large-scale exploratory study of android sports apps in the google play store
Bhagya Chembakottu
Heng Li
Measuring the Knowledge Acquisition-Utilization Gap in Pretrained Language Models
Amirhossein Kazemnejad
Mehdi Rezagholizadeh
Prasanna Parthasarathi
Nash Learning from Human Feedback
R'emi Munos
Michal Valko
Daniele Calandriello
M. G. Azar
Mark Rowland
Zhaohan Daniel Guo
Yunhao Tang
Matthieu Geist
Thomas Mesnard
Andrea Michi
Marco Selvi
Sertan Girgin
Nikola Momchev
Olivier Bachem
Daniel J Mankowitz
Bilal Piot
Reinforcement learning from human feedback (RLHF) has emerged as the main paradigm for aligning large language models (LLMs) with human pref… (voir plus)erences. Typically, RLHF involves the initial step of learning a reward model from human feedback, often expressed as preferences between pairs of text generations produced by a pre-trained LLM. Subsequently, the LLM's policy is fine-tuned by optimizing it to maximize the reward model through a reinforcement learning algorithm. However, an inherent limitation of current reward models is their inability to fully represent the richness of human preferences and their dependency on the sampling distribution. In this study, we introduce an alternative pipeline for the fine-tuning of LLMs using pairwise human feedback. Our approach entails the initial learning of a preference model, which is conditioned on two inputs given a prompt, followed by the pursuit of a policy that consistently generates responses preferred over those generated by any competing policy, thus defining the Nash equilibrium of this preference model. We term this approach Nash learning from human feedback (NLHF). In the context of a tabular policy representation, we present a novel algorithmic solution, Nash-MD, founded on the principles of mirror descent. This algorithm produces a sequence of policies, with the last iteration converging to the regularized Nash equilibrium. Additionally, we explore parametric representations of policies and introduce gradient descent algorithms for deep-learning architectures. To demonstrate the effectiveness of our approach, we present experimental results involving the fine-tuning of a LLM for a text summarization task. We believe NLHF offers a compelling avenue for preference learning and policy optimization with the potential of advancing the field of aligning LLMs with human preferences.
Predictive inference for travel time on transportation networks
Mohamad Elmasri
Aurélie Labbe
Denis Larocque
Qualitative Code Suggestion: A Human-Centric Approach to Qualitative Coding
Qualitative coding is a content analysis method in which researchers read through a text corpus and assign descriptive labels or qualitative… (voir plus) codes to passages. It is an arduous and manual process which human-computer interaction (HCI) studies have shown could greatly benefit from NLP techniques to assist qualitative coders. Yet, previous attempts at leveraging language technologies have set up qualitative coding as a fully automatable classification problem. In this work, we take a more assistive approach by defining the task of qualitative code suggestion (QCS) in which a ranked list of previously assigned qualitative codes is suggested from an identified passage. In addition to being user-motivated, QCS integrates previously ignored properties of qualitative coding such as the sequence in which passages are annotated, the importance of rare codes and the differences in annotation styles between coders. We investigate the QCS task by releasing the first publicly available qualitative coding dataset, CVDQuoding, consisting of interviews conducted with women at risk of cardiovascular disease. In addition, we conduct a human evaluation which shows that our systems consistently make relevant code suggestions.
Rainproof: An Umbrella To Shield Text Generators From Out-Of-Distribution Data
Maxime DARRIN
Pierre Colombo
Implementing effective control mechanisms to ensure the proper functioning and security of deployed NLP models, from translation to chatbots… (voir plus), is essential. A key ingredient to ensure safe system behaviour is Out-Of-Distribution (OOD) detection, which aims to detect whether an input sample is statistically far from the training distribution. Although OOD detection is a widely covered topic in classification tasks, most methods rely on hidden features output by the encoder. In this work, we focus on leveraging soft-probabilities in a black-box framework, i.e. we can access the soft-predictions but not the internal states of the model. Our contributions include: (i) RAINPROOF a Relative informAItioN Projection OOD detection framework; and (ii) a more operational evaluation setting for OOD detection. Surprisingly, we find that OOD detection is not necessarily aligned with task-specific measures. The OOD detector may filter out samples well processed by the model and keep samples that are not, leading to weaker performance. Our results show that RAINPROOF provides OOD detection methods more aligned with task-specific performance metrics than traditional OOD detectors.
Shape-Based Measures Improve Scene Categorization
Morteza Rezanejad
John Wilder
Dirk B. Walther
Allan D. Jepson
Sven Dickinson
Converging evidence indicates that deep neural network models that are trained on large datasets are biased toward color and texture informa… (voir plus)tion. Humans, on the other hand, can easily recognize objects and scenes from images as well as from bounding contours. Mid-level vision is characterized by the recombination and organization of simple primary features into more complex ones by a set of so-called Gestalt grouping rules. While described qualitatively in the human literature, a computational implementation of these perceptual grouping rules is so far missing. In this article, we contribute a novel set of algorithms for the detection of contour-based cues in complex scenes. We use the medial axis transform (MAT) to locally score contours according to these grouping rules. We demonstrate the benefit of these cues for scene categorization in two ways: (i) Both human observers and CNN models categorize scenes most accurately when perceptual grouping information is emphasized. (ii) Weighting the contours with these measures boosts performance of a CNN model significantly compared to the use of unweighted contours. Our work suggests that, even though these measures are computed directly from contours in the image, current CNN models do not appear to extract or utilize these grouping cues.
Spectral Temporal Contrastive Learning
Sacha Morin
Somjit Nath
Learning useful data representations without requiring labels is a cornerstone of modern deep learning. Self-supervised learning methods, pa… (voir plus)rticularly contrastive learning (CL), have proven successful by leveraging data augmentations to define positive pairs. This success has prompted a number of theoretical studies to better understand CL and investigate theoretical bounds for downstream linear probing tasks. This work is concerned with the temporal contrastive learning (TCL) setting where the sequential structure of the data is used instead to define positive pairs, which is more commonly used in RL and robotics contexts. In this paper, we adapt recent work on Spectral CL to formulate Spectral Temporal Contrastive Learning (STCL). We discuss a population loss based on a state graph derived from a time-homogeneous reversible Markov chain with uniform stationary distribution. The STCL loss enables to connect the linear probing performance to the spectral properties of the graph, and can be estimated by considering previously observed data sequences as an ensemble of MCMC chains.