Suivez les chercheuses et chercheurs de Mila à AISTATS 2025

Logo Mila et AISTATS

Cette année, les chercheuses et chercheurs de Mila présenteront 15 articles scientifiques à AISTATS 2025 à Mai Khao, en Thaïlande. Voici le programme des chercheuses et chercheurs affilié.e.s à Mila présentant leur travail à la conférence.

Une version PDF est disponible ici

Mila @ AISTATS 2025, 03.05.2025

Poster Session 1

  • Sample compression unleashed : New generalization bounds for real valued losses: Mathieu Bazinet, Valentina Zantedeschi, Pascal Germain
  • Feasible Learning: Juan Ramirez, Ignacio Hounie, Juan Elenter, Jose Gallego-Posada, Meraj Hashemizadeh, Alejandro Ribeiro, Simon Lacoste-Julien
  • Fair Resource Allocation in Weakly Coupled Markov Decision Processes: Xiaohui Tu, Yossiri Adulyasak, Nima Akbarzadeh, Erick Delage
  • The Size of Teachers as a Measure of Data Complexity: PAC-Bayes Excess Risk Bounds and Scaling Laws: Gintare Karolina Dziugaite, Daniel M. Roy
  • Fast Convergence of Softmax Policy Mirror Ascent : Reza Asad, Reza Babanezhad Harikandeh, Issam Hadj Laradji, Nicolas Le Roux, Sharan Vaswani
  • Planning and Learning in Risk-Aware Restless Multi-Arm Bandits: Nima Akbarzadeh, Yossiri Adulyasak, Erick Delage

Mila @ AISTATS 2025, 04.05.2025

Oral Session 3: Optimization

Implicit Diffusion: Efficient Optimization through Stochastic Sampling : Pierre Marion, Anna Korba, Peter Bartlett, Mathieu Blondel, Valentin De Bortoli, Arnaud Doucet, Felipe Llinares-López, Courtney Paquette, Quentin Berthet

 

Poster Session 2

  • Implicit Diffusion: Efficient Optimization through Stochastic Sampling : Pierre Marion, Anna Korba, Peter Bartlett, Mathieu Blondel, Valentin De Bortoli, Arnaud Doucet, Felipe Llinares-López, Courtney Paquette, Quentin Berthet
  • On the Identifiability of Causal Abstractions: Xiusi Li, Sékou-Oumar Kaba, Siamak Ravanbakhsh
  • A Unifying Framework for Action-Conditional Self-Predictive Reinforcement Learning: Khimya Khetarpal, Zhaohan Daniel Guo, Bernardo Avila Pires, Yunhao Tang, Clare Lyle, Mark Rowland, Nicolas Heess, Diana Borsa, Arthur Guez, Will Dabney
  • MODL: Multilearner Online Deep Learning: Antonios Valkanas, Boris Oreshkin, Mark Coates
  • Ant Colony Sampling with GFlowNets for Combinatorial Optimization: Minsu Kim, Sanghyeok Choi, Jiwoo Son, Hyeonah Kim, Jinkyoo Park, Yoshua Bengio
  • Q-learning for Quantile MDPs: A Decomposition, Performance, and Convergence Analysis: Jia Lin Hau, Erick Delage, Esther Derman, Mohammad Ghavamzadeh, Marek Petrik
  • InnerThoughts: Disentangling Representations and Predictions in Large Language Models: Didier Chételat, Joseph Cotnareanu, Rylee Thompson, Yingxue Zhang, Mark Coates

Mila @ AISTATS 2025, 05.05.2025

Poster Session 3

  • Performative Prediction on Games and Mechanism Design : António Góis, Mehrnaz Mofakhami, Fernando P. Santos, Simon Lacoste-Julien, Gauthier Gidel
  • Geometry-Aware Generative Autoencoders for Warped Riemannian Metric Learning and Generative Modeling on Data Manifolds: Xingzhi Sun, Danqi Liao, Kincaid MacDonald, Yanlei Zhang, Guillaume Huguet, Chen Liu, Guy Wolf, Ian Adelstein, Tim G. J. Rudner, Smita Krishnaswamy