Portrait de Dun Yuan n'est pas disponible

Dun Yuan

Maîtrise recherche - McGill University
Superviseur⋅e principal⋅e

Publications

Realizing XR Applications Using 5G-Based 3D Holographic Communication and Mobile Edge Computing
Dun Yuan
Ekram Hossain
Di Wu
3D holographic communication has the potential to revolutionize the way people interact with each other in virtual spaces, offering immersiv… (voir plus)e and realistic experiences. However, demands for high data rates, extremely low latency, and high computations to enable this technology pose a significant challenge. To address this challenge, we propose a novel job scheduling algorithm that leverages Mobile Edge Computing (MEC) servers in order to minimize the total latency in 3D holographic communication. One of the motivations for this work is to prevent the uncanny valley effect, which can occur when the latency hinders the seamless and real-time rendering of holographic content, leading to a less convincing and less engaging user experience. Our proposed algorithm dynamically allocates computation tasks to MEC servers, considering the network conditions, computational capabilities of the servers, and the requirements of the 3D holographic communication application. We conduct extensive experiments to evaluate the performance of our algorithm in terms of latency reduction, and the results demonstrate that our approach significantly outperforms other baseline methods. Furthermore, we present a practical scenario involving Augmented Reality (AR), which not only illustrates the applicability of our algorithm but also highlights the importance of minimizing latency in achieving high-quality holographic views. By efficiently distributing the computation workload among MEC servers and reducing the overall latency, our proposed algorithm enhances the user experience in 3D holographic communications and paves the way for the widespread adoption of this technology in various applications, such as telemedicine, remote collaboration, and entertainment.
Mixed-Variable PSO with Fairness on Multi-Objective Field Data Replication in Wireless Networks
Dun Yuan
Yujin Nam
Amal Feriani
Abhisek Konar
Di Wu
Seowoo Jang
Digital twins have shown a great potential in supporting the development of wireless networks. They are virtual representations of 5G/6G sys… (voir plus)tems enabling the design of machine learning and optimization-based techniques. Field data replication is one of the critical aspects of building a simulation-based twin, where the objective is to calibrate the simulation to match field performance measurements. Since wireless networks involve a variety of key performance indicators (KPIs), the replication process becomes a multi-objective optimization problem in which the purpose is to minimize the error between the simulated and field data KPIs. Unlike previous works, we focus on designing a data-driven search method to calibrate the simulator and achieve accurate and reliable reproduction of field performance. This work proposes a search-based algorithm based on mixed-variable particle swarm optimization (PSO) to find the optimal simulation parameters. Furthermore, we extend this solution to account for potential conflicts between the KPIs using a-fairness concept to adjust the importance attributed to each KPI during the search. Experiments on field data showcase the effectiveness of our approach to (i) improve the accuracy of the replication, (ii) enhance the fairness between the different KPIs, and (iii) guarantee faster convergence compared to other methods.