Rejoignez-nous le 19 novembre pour la troisième édition du concours de vulgarisation scientifique de Mila, où les étudiant·e·s présenteront leurs recherches complexes en trois minutes devant un jury.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Federated learning (FL) is an emerging paradigm that permits a large number of clients with heterogeneous data to coordinate learning of a u… (voir plus)nified global model without the need to share data amongst each other. A major challenge in federated learning is the heterogeneity of data across client, which can degrade the performance of standard FL algorithms. Standard FL algorithms involve averaging of model parameters or gradient updates to approximate the global model at the server. However, we argue that in heterogeneous settings, averaging can result in information loss and lead to poor generalization due to the bias induced by dominant client gradients. We hypothesize that to generalize better across non-i.i.d datasets, the algorithms should focus on learning the invariant mechanism that is constant while ignoring spurious mechanisms that differ across clients. Inspired from recent works in Out-of-Distribution generalization, we
propose a gradient masked averaging approach for FL as an alternative to the standard averaging of client updates. This aggregation technique for client updates can be adapted as a drop-in replacement in most existing federated algorithms. We perform extensive experiments on multiple FL algorithms with in-distribution, real-world, feature-skewed out-of-distribution, and quantity imbalanced datasets and show that it provides consistent improvements, particularly in the case of heterogeneous clients.