Portrait de Rebecca Salganik n'est pas disponible

Rebecca Salganik

Alumni

Publications

Fairness Through Domain Awareness: Mitigating Popularity Bias For Music Discovery
As online music platforms grow, music recommender systems play a vital role in helping users navigate and discover content within their vast… (voir plus) musical databases. At odds with this larger goal, is the presence of popularity bias, which causes algorithmic systems to favor mainstream content over, potentially more relevant, but niche items. In this work we explore the intrinsic relationship between music discovery and popularity bias. To mitigate this issue we propose a domain-aware, individual fairness-based approach which addresses popularity bias in graph neural network (GNNs) based recommender systems. Our approach uses individual fairness to reflect a ground truth listening experience, i.e., if two songs sound similar, this similarity should be reflected in their representations. In doing so, we facilitate meaningful music discovery that is robust to popularity bias and grounded in the music domain. We apply our BOOST methodology to two discovery based tasks, performing recommendations at both the playlist level and user level. Then, we ground our evaluation in the cold start setting, showing that our approach outperforms existing fairness benchmarks in both performance and recommendation of lesser-known content. Finally, our analysis explains why our proposed methodology is a novel and promising approach to mitigating popularity bias and improving the discovery of new and niche content in music recommender systems.
Harms from Increasingly Agentic Algorithmic Systems
Alva Markelius
Chris Pang
Dmitrii Krasheninnikov
Lauro Langosco
Zhonghao He
Yawen Duan
Micah Carroll
Alex Mayhew
Katherine Collins
John Burden
Wanru Zhao
Konstantinos Voudouris
Umang Bhatt
Adrian Weller … (voir 2 de plus)
Research in Fairness, Accountability, Transparency, and Ethics (FATE)1 has established many sources and forms of algorithmic harm, in domain… (voir plus)s as diverse as health care, finance, policing, and recommendations. Much work remains to be done to mitigate the serious harms of these systems, particularly those disproportionately affecting marginalized communities. Despite these ongoing harms, new systems are being developed and deployed, typically without strong regulatory barriers, threatening the perpetuation of the same harms and the creation of novel ones. In response, the FATE community has emphasized the importance of anticipating harms, rather than just responding to them. Anticipation of harms is especially important given the rapid pace of developments in machine learning (ML). Our work focuses on the anticipation of harms from increasingly agentic systems. Rather than providing a definition of agency as a binary property, we identify 4 key characteristics which, particularly in combination, tend to increase the agency of a given algorithmic system: underspecification, directness of impact, goal-directedness, and long-term planning. We also discuss important harms which arise from increasing agency – notably, these include systemic and/or long-range impacts, often on marginalized or unconsidered stakeholders. We emphasize that recognizing agency of algorithmic systems does not absolve or shift the human responsibility for algorithmic harms. Rather, we use the term agency to highlight the increasingly evident fact that ML systems are not fully under human control. Our work explores increasingly agentic algorithmic systems in three parts. First, we explain the notion of an increase in agency for algorithmic systems in the context of diverse perspectives on agency across disciplines. Second, we argue for the need to anticipate harms from increasingly agentic systems. Third, we discuss important harms from increasingly agentic systems and ways forward for addressing them. We conclude by reflecting on implications of our work for anticipating algorithmic harms from emerging systems.