Le traitement du langage naturel à l'ère de l'IA générative
Rejoignez-nous à Mila en octobre pour un atelier de trois jour visant à explorer le potentiel de transformation des technologies langagières et leurs implications pour la société.
Ce programme est conçu pour fournir aux professionnel·le·s travaillant dans le domaine de la politique une compréhension fondamentale de la technologie de l'IA.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Développeur, Logiciels de recherche, Innovation, développement et technologies
Publications
Automatic differentiation in ML: Where we are and where we should be going
Bart van Merriënboer
Olivier Breuleux
Arnaud Bergeron
Pascal Lamblin
We review the current state of automatic differentiation (AD) for array programming in machine learning (ML), including the different approa… (voir plus)ches such as operator overloading (OO) and source transformation (ST) used for AD, graph-based intermediate representations for programs, and source languages. Based on these insights, we introduce a new graph-based intermediate representation (IR) which specifically aims to efficiently support fully-general AD for array programming. Unlike existing dataflow programming representations in ML frameworks, our IR naturally supports function calls, higher-order functions and recursion, making ML models easier to implement. The ability to represent closures allows us to perform AD using ST without a tape, making the resulting derivative (adjoint) program amenable to ahead-of-time optimization using tools from functional language compilers, and enabling higher-order derivatives. Lastly, we introduce a proof of concept compiler toolchain called Myia which uses a subset of Python as a front end.
Automatic differentiation in ML: Where we are and where we should be going
Bart van Merriënboer
Olivier Breuleux
Arnaud Bergeron
Pascal Lamblin
We review the current state of automatic differentiation (AD) for array programming in machine learning (ML), including the different approa… (voir plus)ches such as operator overloading (OO) and source transformation (ST) used for AD, graph-based intermediate representations for programs, and source languages. Based on these insights, we introduce a new graph-based intermediate representation (IR) which specifically aims to efficiently support fully-general AD for array programming. Unlike existing dataflow programming representations in ML frameworks, our IR naturally supports function calls, higher-order functions and recursion, making ML models easier to implement. The ability to represent closures allows us to perform AD using ST without a tape, making the resulting derivative (adjoint) program amenable to ahead-of-time optimization using tools from functional language compilers, and enabling higher-order derivatives. Lastly, we introduce a proof of concept compiler toolchain called Myia which uses a subset of Python as a front end.
Automatic differentiation is an essential feature of machine learning frameworks. However, its implementation in existing frameworks often h… (voir plus)as limitations. In dataflow programming frameworks such as Theano or TensorFlow the representation used makes supporting higher-order gradients difficult. On the other hand, operator overloading frameworks such as PyTorch are flexible, but do not lend themselves well to optimization. With Myia, we attempt to have the best of both worlds: Building on the work by Pearlmutter and Siskind we implement a first-order gradient operator for a subset of the Python programming language.
Theano is a Python library that allows to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficie… (voir plus)ntly. Since its introduction, it has been one of the most used CPU and GPU mathematical compilers - especially in the machine learning community - and has shown steady performance improvements. Theano is being actively and continuously developed since 2008, multiple frameworks have been built on top of it and it has been used to produce many state-of-the-art machine learning models.
The present article is structured as follows. Section I provides an overview of the Theano software and its community. Section II presents the principal features of Theano and how to use them, and compares them with other similar projects. Section III focuses on recently-introduced functionalities and improvements. Section IV compares the performance of Theano against Torch7 and TensorFlow on several machine learning models. Section V discusses current limitations of Theano and potential ways of improving it.
Theano is a Python library that allows to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficie… (voir plus)ntly. Since its introduction, it has been one of the most used CPU and GPU mathematical compilers - especially in the machine learning community - and has shown steady performance improvements. Theano is being actively and continuously developed since 2008, multiple frameworks have been built on top of it and it has been used to produce many state-of-the-art machine learning models.
The present article is structured as follows. Section I provides an overview of the Theano software and its community. Section II presents the principal features of Theano and how to use them, and compares them with other similar projects. Section III focuses on recently-introduced functionalities and improvements. Section IV compares the performance of Theano against Torch7 and TensorFlow on several machine learning models. Section V discusses current limitations of Theano and potential ways of improving it.
In this paper, we present Theano 1 , a framework in the Python programming language for defining, optimizing and evaluating expressions invo… (voir plus)lving high-level operations on tensors. Theano offers most of NumPy’s functionality, but adds automatic symbolic differentiation, GPU support, and faster expression evaluation. Theano is a general mathematical tool, but it was developed with the goal of facilitating research in deep learning. The Deep Learning Tutorials 2 introduce recent advances in deep learning, and showcase how Theano
Theano is a compiler for mathematical expressions in Python that combines the convenience of NumPy's syntax with the speed of optimized nati… (voir plus)ve machine language. The user composes mathematical expressions in a high-level description that mimics NumPy's syntax and semantics, while being statically typed and functional (as opposed to imperative). These expressions allow Theano to provide symbolic differentiation. Before performing computation, Theano optimizes the choice of expressions, translates them into C++ (or CUDA for GPU), compiles them into dynamically loaded Python modules, all automatically. Common machine learn- ing algorithms implemented with Theano are from 1:6 to 7:5 faster than competitive alternatives (including those implemented with C/C++, NumPy/SciPy and MATLAB) when compiled for the CPU and between 6:5 and 44 faster when compiled for the GPU. This paper illustrates how to use Theano, outlines the scope of the compiler, provides benchmarks on both CPU and GPU processors, and explains its overall design.