Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
In hospitals, data are siloed to specific information systems that make the same information available under different modalities such as th… (voir plus)e different medical imaging exams the patient undergoes (CT scans, MRI, PET, Ultrasound, etc.) and their associated radiology reports. This offers unique opportunities to obtain and use at train-time those multiple views of the same information that might not always be available at test-time.In this paper, we propose an innovative framework that makes the most of available data by learning good representations of a multi-modal input that are resilient to modality dropping at test-time, using recent advances in mutual information maximization. By maximizing cross-modal information at train time, we are able to outperform several state-of-the-art baselines in two different settings, medical image classification, and segmentation. In particular, our method is shown to have a strong impact on the inference-time performance of weaker modalities.
2021-06-06
IEEE International Conference on Acoustics, Speech, and Signal Processing (publié)
Survival analysis is a type of semi-supervised task where the target output (the survival time) is often right-censored. Utilizing this info… (voir plus)rmation is a challenge because it is not obvious how to correctly incorporate these censored examples into a model. We study how three categories of loss functions can take advantage of this information: partial likelihood methods, rank methods, and our own classification method based on a Wasserstein metric (WM) and the non-parametric Kaplan Meier (KM) estimate of the probability density to impute the labels of censored examples. The proposed method predicts the probability distribution of an event, letting us compute survival curves and expected times of survival that are easier to interpret than the rank. We also demonstrate that this approach directly optimizes the expected C-index which is the most common evaluation metric for survival models.
Cross-Modal Information Maximization for Medical Imaging: CMIM
Survival analysis is a type of semi-supervised ranking task where the target output (the survival time) is often right-censored. Utilizing t… (voir plus)his information is a challenge because it is not obvious how to correctly incorporate these censored examples into a model. We study how three categories of loss functions, namely partial likelihood methods, rank methods, and our classification method based on a Wasserstein metric (WM) and the non-parametric Kaplan Meier estimate of the probability density to impute the labels of censored examples, can take advantage of this information. The proposed method allows us to have a model that predict the probability distribution of an event. If a clinician had access to the detailed probability of an event over time this would help in treatment planning. For example, determining if the risk of kidney graft rejection is constant or peaked after some time. Also, we demonstrate that this approach directly optimizes the expected C-index which is the most common evaluation metric for ranking survival models.