Portrait de Félix Therrien

Félix Therrien

Scientifique en apprentissage automatique appliqué, Recherche appliquée en apprentissage automatique

Publications

A physics-based data-driven model for CO$_2$ gas diffusion electrodes to drive automated laboratories
Abhishek Soni
Karry Ocean
Kevan Dettelbach
Ribwar Ahmadi
Mehrdad Mokhtari
Curtis P. Berlinguette
The electrochemical reduction of atmospheric CO…
OBELiX: A Curated Dataset of Crystal Structures and Experimentally Measured Ionic Conductivities for Lithium Solid-State Electrolytes
F'elix Therrien
Rhiannon Hendley
Alex Hern'andez-Garc'ia
Sun Sun
Alain Tchagang
Jiang Su
Samuel Huberman
Hongyu Guo
Homin Shin
Solid-state electrolyte batteries are expected to replace liquid electrolyte lithium-ion batteries in the near future thanks to their higher… (voir plus) theoretical energy density and improved safety. However, their adoption is currently hindered by their lower effective ionic conductivity, a quantity that governs charge and discharge rates. Identifying highly ion-conductive materials using conventional theoretical calculations and experimental validation is both time-consuming and resource-intensive. While machine learning holds the promise to expedite this process, relevant ionic conductivity and structural data is scarce. Here, we present OBELiX, a domain-expert-curated database of
OBELiX: A Curated Dataset of Crystal Structures and Experimentally Measured Ionic Conductivities for Lithium Solid-State Electrolytes
Rhiannon Hendley
Alex Hernandez-Garcia
Sun Sun
Alain Tchagang
Jiang Su
Samuel Huberman
Hongyu Guo
Homin Shin
Solid-state electrolyte batteries are expected to replace liquid electrolyte lithium-ion batteries in the near future thanks to their higher… (voir plus) theoretical energy density and improved safety. However, their adoption is currently hindered by their lower effective ionic conductivity, a quantity that governs charge and discharge rates. Identifying highly ion-conductive materials using conventional theoretical calculations and experimental validation is both time-consuming and resource-intensive. While machine learning holds the promise to expedite this process, relevant ionic conductivity and structural data is scarce. Here, we present OBELiX, a domain-expert-curated database of
A physics-based data-driven model for CO$_2$ gas diffusion electrodes to drive automated laboratories
F'elix Therrien
Abhishek Soni
Karry Ocean
Kevan Dettelbach
Ribwar Ahmadi
Mehrdad Mokhtari
C. Berlinguette
The electrochemical reduction of atmospheric CO…