Portrait de Dominique Beaini n'est pas disponible

Dominique Beaini

Membre industriel associé
Professeur associé, Université de Montréal, Département d'informatique et de recherche opérationnelle
Chef de la recherche graphique, Valence Discovery
Sujets de recherche
Apprentissage multimodal
Apprentissage sur graphes
Modélisation moléculaire
Réseaux de neurones en graphes

Biographie

Je suis actuellement chef d’équipe de l’unité de recherche de Valence Discovery, l’une des principales entreprises dans le domaine de l’apprentissage automatique appliqué à la découverte de médicaments, et professeur associé au Département d’informatique et de recherche opérationnelle (DIRO) de l’Université de Montréal. Mon objectif est d’amener l’apprentissage automatique vers une meilleure compréhension des molécules et de leurs interactions avec la biologie humaine. Je suis titulaire d’un doctorat de Polytechnique Montréal; mes recherches antérieures portaient sur la robotique et la vision par ordinateur.

Mes intérêts de recherche sont les réseaux neuronaux de graphes, l’apprentissage autosupervisé, la mécanique quantique, la découverte de médicaments, la vision par ordinateur et la robotique.

Étudiants actuels

Doctorat - UdeM
Co-superviseur⋅e :
Maîtrise recherche - UdeM
Maîtrise recherche - UdeM

Publications

Amortized Sampling with Transferable Normalizing Flows
Charlie B. Tan
Leon Klein
Saifuddin Syed
Michael M. Bronstein
Efficient equilibrium sampling of molecular conformations remains a core challenge in computational chemistry and statistical inference. Cla… (voir plus)ssical approaches such as molecular dynamics or Markov chain Monte Carlo inherently lack amortization; the computational cost of sampling must be paid in-full for each system of interest. The widespread success of generative models has inspired interest into overcoming this limitation through learning sampling algorithms. Despite performing on par with conventional methods when trained on a single system, learned samplers have so far demonstrated limited ability to transfer across systems. We prove that deep learning enables the design of scalable and transferable samplers by introducing Prose, a 280 million parameter all-atom transferable normalizing flow trained on a corpus of peptide molecular dynamics trajectories up to 8 residues in length. Prose draws zero-shot uncorrelated proposal samples for arbitrary peptide systems, achieving the previously intractable transferability across sequence length, whilst retaining the efficient likelihood evaluation of normalizing flows. Through extensive empirical evaluation we demonstrate the efficacy of Prose as a proposal for a variety of sampling algorithms, finding a simple importance sampling-based finetuning procedure to achieve superior performance to established methods such as sequential Monte Carlo on unseen tetrapeptides. We open-source the Prose codebase, model weights, and training dataset, to further stimulate research into amortized sampling methods and finetuning objectives.
Amortized Sampling with Transferable Normalizing Flows
Charlie B. Tan
Leon Klein
Saifuddin Syed
Michael M. Bronstein
Efficient equilibrium sampling of molecular conformations remains a core challenge in computational chemistry and statistical inference. Cla… (voir plus)ssical approaches such as molecular dynamics or Markov chain Monte Carlo inherently lack amortization; the computational cost of sampling must be paid in-full for each system of interest. The widespread success of generative models has inspired interest into overcoming this limitation through learning sampling algorithms. Despite performing on par with conventional methods when trained on a single system, learned samplers have so far demonstrated limited ability to transfer across systems. We prove that deep learning enables the design of scalable and transferable samplers by introducing Prose, a 280 million parameter all-atom transferable normalizing flow trained on a corpus of peptide molecular dynamics trajectories up to 8 residues in length. Prose draws zero-shot uncorrelated proposal samples for arbitrary peptide systems, achieving the previously intractable transferability across sequence length, whilst retaining the efficient likelihood evaluation of normalizing flows. Through extensive empirical evaluation we demonstrate the efficacy of Prose as a proposal for a variety of sampling algorithms, finding a simple importance sampling-based finetuning procedure to achieve superior performance to established methods such as sequential Monte Carlo on unseen tetrapeptides. We open-source the Prose codebase, model weights, and training dataset, to further stimulate research into amortized sampling methods and finetuning objectives.
Progressive Inference-Time Annealing of Diffusion Models for Sampling from Boltzmann Densities
Sampling efficiently from a target unnormalized probability density remains a core challenge, with relevance across countless high-impact sc… (voir plus)ientific applications. A promising approach towards this challenge is the design of amortized samplers that borrow key ideas, such as probability path design, from state-of-the-art generative diffusion models. However, all existing diffusion-based samplers remain unable to draw samples from distributions at the scale of even simple molecular systems. In this paper, we propose Progressive Inference-Time Annealing (PITA), a novel framework to learn diffusion-based samplers that combines two complementary interpolation techniques: I.) Annealing of the Boltzmann distribution and II.) Diffusion smoothing. PITA trains a sequence of diffusion models from high to low temperatures by sequentially training each model at progressively higher temperatures, leveraging engineered easy access to samples of the temperature-annealed target density. In the subsequent step, PITA enables simulating the trained diffusion model to procure training samples at a lower temperature for the next diffusion model through inference-time annealing using a novel Feynman-Kac PDE combined with Sequential Monte Carlo. Empirically, PITA enables, for the first time, equilibrium sampling of N-body particle systems, Alanine Dipeptide, and tripeptides in Cartesian coordinates with dramatically lower energy function evaluations. Code available at: https://github.com/taraak/pita
Progressive Inference-Time Annealing of Diffusion Models for Sampling from Boltzmann Densities
Sampling efficiently from a target unnormalized probability density remains a core challenge, with relevance across countless high-impact sc… (voir plus)ientific applications. A promising approach towards this challenge is the design of amortized samplers that borrow key ideas, such as probability path design, from state-of-the-art generative diffusion models. However, all existing diffusion-based samplers remain unable to draw samples from distributions at the scale of even simple molecular systems. In this paper, we propose Progressive Inference-Time Annealing (PITA), a novel framework to learn diffusion-based samplers that combines two complementary interpolation techniques: I.) Annealing of the Boltzmann distribution and II.) Diffusion smoothing. PITA trains a sequence of diffusion models from high to low temperatures by sequentially training each model at progressively higher temperatures, leveraging engineered easy access to samples of the temperature-annealed target density. In the subsequent step, PITA enables simulating the trained diffusion model to procure training samples at a lower temperature for the next diffusion model through inference-time annealing using a novel Feynman-Kac PDE combined with Sequential Monte Carlo. Empirically, PITA enables, for the first time, equilibrium sampling of N-body particle systems, Alanine Dipeptide, and tripeptides in Cartesian coordinates with dramatically lower energy function evaluations. Code available at: https://github.com/taraak/pita
Amortized Sampling with Transferable Normalizing Flows
Charlie B. Tan
Leon Klein
Saifuddin Syed
Michael M. Bronstein
Progressive Inference-Time Annealing of Diffusion Models for Sampling from Boltzmann Densities
Sampling efficiently from a target unnormalized probability density remains a core challenge, with relevance across countless high-impact sc… (voir plus)ientific applications. A promising approach towards this challenge is the design of amortized samplers that borrow key ideas, such as probability path design, from state-of-the-art generative diffusion models. However, all existing diffusion-based samplers remain unable to draw samples from distributions at the scale of even simple molecular systems. In this paper, we propose Progressive Inference-Time Annealing (PITA), a novel framework to learn diffusion-based samplers that combines two complementary interpolation techniques: I.) Annealing of the Boltzmann distribution and II.) Diffusion smoothing. PITA trains a sequence of diffusion models from high to low temperatures by sequentially training each model at progressively higher temperatures, leveraging engineered easy access to samples of the temperature-annealed target density. In the subsequent step, PITA enables simulating the trained diffusion model to procure training samples at a lower temperature for the next diffusion model through inference-time annealing using a novel Feynman-Kac PDE combined with Sequential Monte Carlo. Empirically, PITA enables, for the first time, equilibrium sampling of N-body particle systems, Alanine Dipeptide, and tripeptides in Cartesian coordinates with dramatically lower energy function evaluations. Code available at: https://github.com/taraak/pita
Self-Refining Training for Amortized Density Functional Theory
Cristian Gabellini
Hatem Helal
Density Functional Theory (DFT) allows for predicting all the chemical and physical properties of molecular systems from first principles by… (voir plus) finding an approximate solution to the many-body Schr\"odinger equation. However, the cost of these predictions becomes infeasible when increasing the scale of the energy evaluations, e.g., when calculating the ground-state energy for simulating molecular dynamics. Recent works have demonstrated that, for substantially large datasets of molecular conformations, Deep Learning-based models can predict the outputs of the classical DFT solvers by amortizing the corresponding optimization problems. In this paper, we propose a novel method that reduces the dependency of amortized DFT solvers on large pre-collected datasets by introducing a self-refining training strategy. Namely, we propose an efficient method that simultaneously trains a deep-learning model to predict the DFT outputs and samples molecular conformations that are used as training data for the model. We derive our method as a minimization of the variational upper bound on the KL-divergence measuring the discrepancy between the generated samples and the target Boltzmann distribution defined by the ground state energy. To demonstrate the utility of the proposed scheme, we perform an extensive empirical study comparing it with the models trained on the pre-collected datasets. Finally, we open-source our implementation of the proposed algorithm, optimized with asynchronous training and sampling stages, which enables simultaneous sampling and training. Code is available at https://github.com/majhas/self-refining-dft.
Self-Refining Training for Amortized Density Functional Theory
Cristian Gabellini
Hatem Helal
Density Functional Theory (DFT) allows for predicting all the chemical and physical properties of molecular systems from first principles by… (voir plus) finding an approximate solution to the many-body Schrödinger equation. However, the cost of these predictions becomes infeasible when increasing the scale of the energy evaluations, e.g., when calculating the ground-state energy for simulating molecular dynamics. Recent works have demonstrated that, for substantially large datasets of molecular conformations, Deep Learning-based models can predict the outputs of the classical DFT solvers by amortizing the corresponding optimization problems. In this paper, we propose a novel method that reduces the dependency of amortized DFT solvers on large pre-collected datasets by introducing a self-refining training strategy. Namely, we propose an efficient method that simultaneously trains a deep-learning model to predict the DFT outputs and samples molecular conformations that are used as training data for the model. We derive our method as a minimization of the variational upper bound on the KL-divergence measuring the discrepancy between the generated samples and the target Boltzmann distribution defined by the ground state energy. To demonstrate the utility of the proposed scheme, we perform an extensive empirical study comparing it with the models trained on the pre-collected datasets. Finally, we open-source our implementation of the proposed algorithm, optimized with asynchronous training and sampling stages, which enables simultaneous sampling and training. Code is available at https://github.com/majhas/self-refining-dft.
Virtual Cells: Predict, Explain, Discover
Emmanuel Noutahi
Jason Hartford
Ali Denton
Kristina Ulicna
Jonathan Hsu
Michael Cuccarese
Christopher Gibson
Daniel Cohen
Berton Earnshaw
Virtual Cells: Predict, Explain, Discover
Emmanuel Noutahi
Jason Hartford
Ali Denton
Kristina Ulicna
Michael Craig
Jonathan Hsu
Michael Cuccarese
Christopher Gibson
Daniel Cohen
Berton Earnshaw
Scaling Deep Learning Solutions for Transition Path Sampling
Michael Plainer
Yuanqi Du
Rob Brekelmans
Carla P Gomes
Transition path sampling (TPS) is an important method for studying rare events, such as they happen in chemical reactions or protein folding… (voir plus). These events occur so infrequently that traditional simulations are often impractical, and even recent machine-learning approaches struggle to address this issue for larger systems. In this paper, we propose using modern deep learning techniques to improve the scalability of TPS methods significantly. We highlight the need for better evaluations in the existing literature and start by formulating TPS as a sampling problem over an unnormalized target density and introduce relevant evaluation metrics to assess the effectiveness of TPS solutions from this perspective. To develop a scalable approach, we explore several design choices, including a problem-informed neural network architecture, simulated annealing, the integration of prior knowledge into the sampling process, and attention mechanisms. Finally, we conduct a comprehensive empirical study and compare these design choices with other recently developed deep-learning methods for rare event sampling.
Molphenix: A Multimodal Foundation Model for PhenoMolecular Retrieval
Philip Fradkin
Puria Azadi Moghadam
Karush Suri
Maciej Sypetkowski
Predicting molecular impact on cellular function is a core challenge in therapeutic design. Phenomic experiments, designed to capture cellu… (voir plus)lar morphology, utilize microscopy based techniques and demonstrate a high throughput solution for uncovering molecular impact on the cell. In this work, we learn a joint latent space between molecular structures and microscopy phenomic experiments, aligning paired samples with contrastive learning. Specifically, we study the problem of Contrastive PhenoMolecular Retrieval, which consists of zero-shot molecular structure identification conditioned on phenomic experiments. We assess challenges in multi-modal learning of phenomics and molecular modalities such as experimental batch effect, inactive molecule perturbations, and encoding perturbation concentration. We demonstrate improved multi-modal learner retrieval through (1) a uni-modal pre-trained phenomics model, (2) a novel inter sample similarity aware loss, and (3) models conditioned on a representation of molecular concentration. Following this recipe, we propose MolPhenix, a molecular phenomics model. MolPhenix leverages a pre-trained phenomics model to demonstrate significant performance gains across perturbation concentrations, molecular scaffolds, and activity thresholds. In particular, we demonstrate an 8.1