Mila organise son premier hackathon en informatique quantique le 21 novembre. Une journée unique pour explorer le prototypage quantique et l’IA, collaborer sur les plateformes de Quandela et IBM, et apprendre, échanger et réseauter dans un environnement stimulant au cœur de l’écosystème québécois en IA et en quantique.
Une nouvelle initiative pour renforcer les liens entre la communauté de recherche, les partenaires et les expert·e·s en IA à travers le Québec et le Canada, grâce à des rencontres et événements en présentiel axés sur l’adoption de l’IA dans l’industrie.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Antoine Bordes
Alumni
Publications
C AUSAL R: Causal Reasoning over Natural Language Rulebases
Transformers have been shown to be able to 001 perform deductive reasoning on a logical rule-002 base containing rules and statements writte… (voir plus)n 003 in natural language. Recent works show that 004 such models can also produce the reasoning 005 steps (i.e., the proof graph ) that emulate the 006 model’s logical reasoning process. But these 007 models behave as a black-box unit that emu-008 lates the reasoning process without any causal 009 constraints in the reasoning steps, thus ques-010 tioning the faithfulness. In this work, we frame 011 the deductive logical reasoning task as a causal 012 process by defining three modular components: 013 rule selection, fact selection, and knowledge 014 composition. The rule and fact selection steps 015 select the candidate rule and facts to be used 016 and then the knowledge composition combines 017 them to generate new inferences. This ensures 018 model faithfulness by assured causal relation 019 from the proof step to the inference reasoning. 020 To test our causal reasoning framework, we 021 propose C AUSAL R where the above three com-022 ponents are independently modeled by trans-023 formers. We observe that C AUSAL R is robust 024 to novel language perturbations, and is com-025 petitive with previous works on existing rea-026 soning datasets. Furthermore, the errors made 027 by C AUSAL R are more interpretable due to 028 the multi-modular approach compared to black-029 box generative models. 1 030
SPE: Symmetrical Prompt Enhancement for Factual Knowledge Retrieval
Pretrained language models (PLMs) have 001 been shown to accumulate factual knowledge 002 from their unsupervised pretraining proce-003 dure… (voir plus)s (Petroni et al., 2019). Prompting is an 004 effective way to query such knowledge from 005 PLMs. Recently, continuous prompt methods 006 have been shown to have a larger potential 007 than discrete prompt methods in generating ef-008 fective queries (Liu et al., 2021a). However, 009 these methods do not consider symmetry of 010 the task. In this work, we propose Symmet-011 rical Prompt Enhancement (SPE), a continu-012 ous prompt-based method for fact retrieval that 013 leverages the symmetry of the task. Our results 014 on LAMA, a popular fact retrieval dataset, 015 show significant improvement of SPE over pre-016 vious prompt methods