Portrait de Andrea Lodi

Andrea Lodi

Membre académique associé
Professeur associé, Polytechnique Montréal, Département de mathématiques et de génie industriel (MAGI)
Fondateur et directeur scientifique, IVADO Labs
Sujets de recherche
Optimisation

Biographie

Andrea Lodi est professeur associé au Département de mathématiques et de génie industriel de Polytechnique Montréal. Il est aussi le fondateur et directeur scientifique d’IVADO Labs.

Depuis 2014, il est titulaire de la Chaire d'excellence en recherche du Canada sur la science des données pour la prise de décision en temps réel (Polytechnique Montréal), la chaire de recherche la plus importante au pays dans le domaine de la recherche opérationnelle. Reconnu internationalement pour ses travaux sur la programmation mixte linéaire et non linéaire, le professeur Lodi se concentre sur le développement de nouveaux modèles et algorithmes permettant de traiter rapidement et efficacement de vastes quantités de données de multiples sources. Ces algorithmes et modèles devraient conduire à la création de stratégies optimisées de prise de décision en temps réel. La Chaire a pour objectif d’appliquer son expertise dans divers secteurs, notamment l’énergie, les transports, la santé, la production et la gestion de la chaîne logistique.

Titulaire d'un doctorat en ingénierie des systèmes (2000), Andrea Lodi a été professeur titulaire de recherche opérationnelle au Département de génie électrique, électronique et informationnel de l'Université de Bologne. Il coordonne des projets de recherche opérationnelle européens à grande échelle et travaille depuis 2006 comme consultant auprès de l'équipe de recherche et développement CPLEX chez IBM. Il a publié plus de 70 articles dans de grandes revues de programmation mathématique et a été éditeur associé au sein de plusieurs d’entre elles.

Le professeur Lodi a reçu le prix Google 2010 du corps professoral et le prix IBM 2011 du corps professoral. Il a en outre été membre du prestigieux programme Herman Goldstine du centre de recherche IBM Thomas J. Watson en 2005-2006.

Publications

Cardinality Minimization, Constraints, and Regularization: A Survey
Andreas M. Tillmann
Daniel Bienstock
Alexandra Schwartz
We survey optimization problems that involve the cardinality of variable vectors in constraints or the objective function. We provide a unif… (voir plus)ied viewpoint on the general problem classes and models, and give concrete examples from diverse application fields such as signal and image processing, portfolio selection, or machine learning. The paper discusses general-purpose modeling techniques and broadly applicable as well as problem-specific exact and heuristic solution approaches. While our perspective is that of mathematical optimization, a main goal of this work is to reach out to and build bridges between the different communities in which cardinality optimization problems are frequently encountered. In particular, we highlight that modern mixed-integer programming, which is often regarded as impractical due to commonly unsatisfactory behavior of black-box solvers applied to generic problem formulations, can in fact produce provably high-quality or even optimal solutions for cardinality optimization problems, even in large-scale real-world settings. Achieving such performance typically draws on the merits of problem-specific knowledge that may stem from different fields of application and, e.g., shed light on structural properties of a model or its solutions, or lead to the development of efficient heuristics; we also provide some illustrative examples.
Assortment Optimization with Visibility Constraints
Théo Barré
Omar El Housni
Implementing a Hierarchical Deep Learning Approach for Simulating multilevel Auction Data
Marcelin Joanis
Igor Sadoune
Increasing schedule reliability in the multiple depot vehicle scheduling problem with stochastic travel time
L'ea Ricard
Guy Desaulniers
Louis-Martin Rousseau
Reinforcement learning for freight booking control problems
Justin Dumouchelle
Recovering Dantzig–Wolfe Bounds by Cutting Planes
Rui Chen
Oktay Günlük
Leveraging Dantzig–Wolfe Decomposition in the Original Variable Space for Mixed-Integer Programming Dantzig–Wolfe decomposition has been… (voir plus) extensively applied to solve large-scale mixed-integer programs with decomposable structures, leading to exact solution approaches, such as branch and price. However, these approaches would require solving the problem in an extended variable space and are not readily present in off-the-shelf solvers. In “Recovering Dantzig–Wolfe Bounds by Cutting Planes,” Chen, Günlük, and Lodi propose a computational effective approach for generating cutting planes from Dantzig–Wolfe decomposition to enhance branch and cut in the space of original variables. The proposed approach requires a relatively small number of cutting planes to recover the strength of the Dantzig–Wolfe dual bound and should be easy to implement in general-purpose mixed-integer programming solvers. The authors show that these cutting planes typically lead to a formulation with lower dual degeneracy and hence, a better computational performance than naïve approaches, such as the objective function cut.
An Exact Method for (Constrained) Assortment Optimization Problems with Product Costs
Markus Leitner
Roberto Roberti
Claudio Sole
A framework for fair decision-making over time with time-invariant utilities
Sriram Sankaranarayanan
Guanyi Wang
An improved column-generation-based matheuristic for learning classification trees
Krunal Kishor Patel
Guy Desaulniers
Learning to repeatedly solve routing problems
Mouad Morabit
Guy Desaulniers
In the last years, there has been a great interest in machine‐learning‐based heuristics for solving NP‐hard combinatorial optimization… (voir plus) problems. The developed methods have shown potential on many optimization problems. In this paper, we present a learned heuristic for the reoptimization of a problem after a minor change in its data. We focus on the case of the capacited vehicle routing problem with static clients (i.e., same client locations) and changed demands. Given the edges of an original solution, the goal is to predict and fix the ones that have a high chance of remaining in an optimal solution after a change of client demands. This partial prediction of the solution reduces the complexity of the problem and speeds up its resolution, while yielding a good quality solution. The proposed approach resulted in solutions with an optimality gap ranging from 0% to 1.7% on different benchmark instances within a reasonable computing time.
Learning Tabu Search Algorithms: A Scheduling Application
Nazgol Niroumandrad
Nadia Lahrichi
. Metaheuristics are widely recognized as efficient approaches for many combinatorial problems. Studies to improve the performance of metahe… (voir plus)uristics have increasingly relied on the use of various methods either combining different metaheuristics or methods originating outside of the metaheuristic field. This paper presents a learning algorithm to improve tabu search by reducing its search space and the evaluation effort. We study the performance of a learning tabu search algorithm using classification methods in an attempt to select moves through the search space more wisely. The experimental results demonstrate the benefit of using a learning mechanism under deterministic and stochastic conditions.
Operational Research: methods and applications
Fotios Petropoulos
Gilbert Laporte
Emel Aktas
Sibel A. Alumur
Claudia Archetti
Hayriye Ayhan
Maria Battarra
Julia A. Bennell
Jean-Marie Bourjolly
John E. Boylan
Michèle Breton
David Canca
Bo Chen
Cihan Tugrul Cicek
Louis Anthony Cox
Christine S.M. Currie
Erik Demeulemeester
Li Ding
Stephen M. Disney … (voir 62 de plus)
Matthias Ehrgott
Martin J. Eppler
Güneş Erdoğan
Bernard Fortz
L. Alberto Franco
Jens Frische
Salvatore Greco
Amanda J. Gregory
Raimo P. Hämäläinen
Willy Herroelen
Mike Hewitt
Jan Holmström
John N. Hooker
Tuğçe Işık
Jill Johnes
Bahar Y. Kara
Özlem Karsu
Katherine Kent
Charlotte Köhler
Martin Kunc
Yong-Hong Kuo
Judit Lienert
Adam N. Letchford
Janny Leung
Dong Li
Haitao Li
Ivana Ljubić
Sebastián Lozano
Virginie Lurkin
Silvano Martello
Ian G. McHale
Gerald Midgley
John D.W. Morecroft
Akshay Mutha
Ceyda Oğuz
Sanja Petrovic
Ulrich Pferschy
Harilaos N. Psaraftis
Sam Rose
Lauri Saarinen
Said Salhi
Jing-Sheng Song
Dimitrios Sotiros
Kathryn E. Stecke
Arne K. Strauss
İstenç Tarhan
Clemens Thielen
Paolo Toth
Greet Vanden Berghe
Christos Vasilakis
Vikrant Vaze
Daniele Vigo
Kai Virtanen
Xun Wang
Rafał Weron
Leroy White
Tom Van Woensel
Mike Yearworth
E. Alper Yıldırım
Georges Zaccour
Xuying Zhao
Throughout its history, Operational Research has evolved to include a variety of methods, models and algorithms that have been applied to a … (voir plus)diverse and wide range of contexts. This encyclopedic article consists of two main sections: methods and applications. The first aims to summarise the up-to-date knowledge and provide an overview of the state-of-the-art methods and key developments in the various subdomains of the field. The second offers a wide-ranging list of areas where Operational Research has been applied. The article is meant to be read in a nonlinear fashion. It should be used as a point of reference or first-port-of-call for a diverse pool of readers: academics, researchers, students, and practitioners. The entries within the methods and applications sections are presented in alphabetical order. The authors dedicate this paper to the 2023 Turkey/Syria earthquake victims. We sincerely hope that advances in OR will play a role towards minimising the pain and suffering caused by this and future catastrophes.