Mila’s AI for Climate Studio aims to bridge the gap between technology and impact to unlock the potential of AI in tackling the climate crisis rapidly and on a massive scale.
The program recently published its first policy brief, titled "Policy Considerations at the Intersection of Quantum Technologies and Artificial Intelligence," authored by Padmapriya Mohan.
Hugo Larochelle appointed Scientific Director of Mila
An adjunct professor at the Université de Montréal and former head of Google's AI lab in Montréal, Hugo Larochelle is a pioneer in deep learning and one of Canada’s most respected researchers.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Publications
HEIST: A Graph Foundation Model for Spatial Transcriptomics and Proteomics Data
We present IntPhys 2, a video benchmark designed to evaluate the intuitive physics understanding of deep learning models. Building on the or… (see more)iginal IntPhys benchmark, IntPhys 2 focuses on four core principles related to macroscopic objects: Permanence, Immutability, Spatio-Temporal Continuity, and Solidity. These conditions are inspired by research into intuitive physical understanding emerging during early childhood. IntPhys 2 offers a comprehensive suite of tests, based on the violation of expectation framework, that challenge models to differentiate between possible and impossible events within controlled and diverse virtual environments. Alongside the benchmark, we provide performance evaluations of several state-of-the-art models. Our findings indicate that while these models demonstrate basic visual understanding, they face significant challenges in grasping intuitive physics across the four principles in complex scenes, with most models performing at chance levels (50%), in stark contrast to human performance, which achieves near-perfect accuracy. This underscores the gap between current models and human-like intuitive physics understanding, highlighting the need for advancements in model architectures and training methodologies.
We present IntPhys 2, a video benchmark designed to evaluate the intuitive physics understanding of deep learning models. Building on the or… (see more)iginal IntPhys benchmark, IntPhys 2 focuses on four core principles related to macroscopic objects: Permanence, Immutability, Spatio-Temporal Continuity, and Solidity. These conditions are inspired by research into intuitive physical understanding emerging during early childhood. IntPhys 2 offers a comprehensive suite of tests, based on the violation of expectation framework, that challenge models to differentiate between possible and impossible events within controlled and diverse virtual environments. Alongside the benchmark, we provide performance evaluations of several state-of-the-art models. Our findings indicate that while these models demonstrate basic visual understanding, they face significant challenges in grasping intuitive physics across the four principles in complex scenes, with most models performing at chance levels (50%), in stark contrast to human performance, which achieves near-perfect accuracy. This underscores the gap between current models and human-like intuitive physics understanding, highlighting the need for advancements in model architectures and training methodologies.
Instruction tuning has been central to the success of recent vision-language models (VLMs), but it remains expensive-requiring large-scale d… (see more)atasets, high-quality annotations, and large compute budgets. We propose PRioritized cOncept learninG via Relative Error-driven Sample Selection (PROGRESS), a data- and compute-efficient framework that enables VLMs to dynamically select what to learn next based on their evolving needs during training. At each stage, the model tracks its learning progress across skills and selects the most informative samples-those it has not already mastered and that are not too difficult to learn at the current stage of training. This strategy effectively controls skill acquisition and the order in which skills are learned. Specifically, we sample from skills showing the highest learning progress, prioritizing those with the most rapid improvement. Unlike prior methods, PROGRESS requires no upfront answer annotations, queries answers only on a need basis, avoids reliance on additional supervision from auxiliary VLMs, and does not require compute-heavy gradient computations for data selection. Experiments across multiple instruction-tuning datasets of varying scales demonstrate that PROGRESS consistently outperforms state-of-the-art baselines with much less data and supervision. Additionally, we show strong cross-architecture generalization and transferability to larger models, validating PROGRESS as a scalable solution for efficient learning.
Scaling language models unlocks impressive capabilities, but the accompanying computational and memory demands make both training and deploy… (see more)ment expensive. Existing efficiency efforts typically target either parameter sharing or adaptive computation, leaving open the question of how to attain both simultaneously. We introduce Mixture-of-Recursions (MoR), a unified framework that combines the two axes of efficiency inside a single Recursive Transformer. MoR reuses a shared stack of layers across recursion steps to achieve parameter efficiency, while lightweight routers enable adaptive token-level thinking by dynamically assign recursion depth to tokens, thereby focusing quadratic attention computation only where it is most useful. Further enhancing its efficiency, MoR incorporates a recursion-wise key-value caching mechanism that eliminates redundant memory access across recursion steps by selectively storing only the key-value caches for designated tokens. Across pretraining runs at model scales ranging from 135M to 1.7B parameters, MoR forms a new Pareto frontier: at equal training FLOPs and smaller model sizes, it significantly lowers validation perplexity and improves few-shot accuracy, while delivering higher throughput compared with vanilla and existing recursive baselines. These gains demonstrate that MoR is an effective path towards large-model quality without incurring large-model cost.
Distributed pre-training of large models at scale often imposes heavy memory demands on individual nodes and incurs significant intra-node c… (see more)ommunication costs. We propose a novel alternative approach that reduces the memory requirements by training small, structured subnetworks of the model on separate workers. Unlike pipelining, our method avoids inter-node activation communication and maintains bandwidth requirements that are comparable to or lower than standard data parallel communication schemes based on all-reduce. We evaluate two subnetwork construction strategies guided by the principle of ensuring uniform representation of each parameter across the distributed training setup. Our results show that the stochastic block dropping technique consistently outperforms the width-wise subnetwork construction previously explored in federated learning. We empirically attribute this superior performance to stronger gradient alignment in subnetworks that retain blocks having skip connections. Preliminary experiments highlight the promise of our approach, achieving a
Efficient long-context modeling remains a critical challenge for natural language processing (NLP), as the time complexity of the predominan… (see more)t Transformer architecture scales quadratically with the sequence length. While state-space models (SSMs) offer alternative sub-quadratic solutions, they struggle to capture long-range dependencies effectively. In this work, we focus on analyzing and improving the long-context modeling capabilities of SSMs. We show that the widely used synthetic task, associative recall, which requires a model to recall a value associated with a single key without context, insufficiently represents the complexities of real-world long-context modeling. To address this limitation, we extend the associative recall to a novel synthetic task, \emph{joint recall}, which requires a model to recall the value associated with a key given in a specified context. Theoretically, we prove that SSMs do not have the expressiveness to solve multi-query joint recall in sub-quadratic time complexity. To resolve this issue, we propose a solution based on integrating SSMs with Context-Dependent Sparse Attention (CDSA), which has the expressiveness to solve multi-query joint recall with sub-quadratic computation. To bridge the gap between theoretical analysis and real-world applications, we propose locality-sensitive Hashing Attention with sparse Key Selection (HAX), which instantiates the theoretical solution and is further tailored to natural language domains. Extensive experiments on both synthetic and real-world long-context benchmarks show that HAX consistently outperforms SSM baselines and SSMs integrated with context-independent sparse attention (CISA).