We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Publications
A Picture is Worth More Than 77 Text Tokens: Evaluating CLIP-Style Models on Dense Captions
The issue of bias in Machine Learning (ML) models is a significant challenge for the machine learning community. Real-world biases can be em… (see more)bedded in the data used to train models, and prior studies have shown that ML models can learn and even amplify these biases. This can result in unfair treatment of individuals based on their inherent characteristics or sensitive attributes such as gender, race, or age. Ensuring fairness is crucial with the increasing use of ML models in high-stakes scenarios and has gained significant attention from researchers in recent years. However, the challenge of ensuring fairness becomes much greater when the assumption of full access to sensitive attributes does not hold. The settings where the hypothesis does not hold include cases where (1) only limited or noisy demographic information is available or (2) demographic information is entirely unobserved due to privacy restrictions. This survey reviews recent research efforts to enforce fairness when sensitive attributes are missing. We propose a taxonomy of existing works and, more importantly, highlight current challenges and future research directions to stimulate research in ML fairness in the setting of missing sensitive attributes.
Neural network training begins with a chaotic phase in which the network is sensitive to small perturbations, such as those caused by stocha… (see more)stic gradient descent (SGD). This sensitivity can cause identically initialized networks to diverge both in parameter space and functional similarity.
However, the exact degree to which networks are sensitive to perturbation, and the sensitivity of networks as they transition out of the chaotic phase, is unclear.
To address this uncertainty, we apply a controlled perturbation at a single point in training time and measure its effect on otherwise identical training trajectories.
We find that both the
Discrete audio tokens have recently gained attention for their potential to bridge the gap between audio and language processing. Ideal audi… (see more)o tokens must preserve content, paralinguistic elements, speaker identity, and many other audio details. Current audio tokenization methods fall into two categories: Semantic tokens, acquired through quantization of Self-Supervised Learning (SSL) models, and Neural compression-based tokens (codecs). Although previous studies have benchmarked codec models to identify optimal configurations, the ideal setup for quantizing pretrained SSL models remains unclear. This paper explores the optimal configuration of semantic tokens across discriminative and generative tasks. We propose a scalable solution to train a universal vocoder across multiple SSL layers. Furthermore, an attention mechanism is employed to identify task-specific influential layers, enhancing the adaptability and performance of semantic tokens in diverse audio applications.
This work presents a novel approach that synergistically integrates convolutional neural networks (CNNs) and Transformer models for decoding… (see more) continuous fine finger motions from surface electromyography (sEMG) signals. This integration capitalizes on CNNs’ proficiency in extracting rich temporal and spatial features from multichannel sEMG data and the Transformer’s superior capability in recognizing complex patterns and long-range dependencies. A significant advancement in this field is the use of a custom-developed Epidermal Electrode Array Sleeve (EEAS) for capturing high-fidelity sEMG signals, enabling more accurate and reliable signal acquisition than traditional methods. The decoded joint angles could be used in seamless and intuitive human-machine interaction in various applications, such as virtual reality, augmented reality, robotic control, and prosthetic control. Evaluations demonstrate the superior performance of the proposed CNN-Transformer hybrid architecture in decoding continuous fine finger motions, outperforming individual CNN and Transformer models. The synergistic integration of CNNs and Transformers presents a powerful framework for sEMG decoding, offering exciting opportunities for naturalistic and intuitive human-machine interaction applications. Its robustness and efficiency make it an ideal choice for real-world applications, promising to enhance the interface between humans and machines significantly. The implications of this research extend to advancing the understanding of human neuromuscular signals and their application in computing interfaces.
2024-06-14
2024 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA) (published)