Portrait of Xue (Steve) Liu is unavailable

Xue (Steve) Liu

Associate Academic Member
Full Professor, McGill University, School of Computer Science
Vice President Research and Development, Chief Scientist and Co-Director, Samsung's Montreal AI Center
Research Topics
Deep Learning

Biography

Xue (Steve) Liu is an associate academic member of Mila – Quebec Artificial Intelligence Institute and full professor at McGill University’s School of Computer Science.

He is also a William Dawson Scholar at McGill, as well as a professor (courtesy appointment) in the Department of Mathematics and Statistics, associate member of the Centre for Intelligent Machines (CIM), and associate member of the Centre for Advanced Systems and Technologies in Communications (SYTACom).

Liu is VP of R&D, chief scientist and co-director of Samsung AI Center Montréal. Before that, he was chief scientist in charge of research and innovation at Tinder Inc., the world’s largest dating and social discovery app, then valued at over US$10 billion.

He is a Fellow of the IEEE and the Canadian Academy of Engineering in addition to being the recipient of many awards, including the 2017 Mitacs Award for Exceptional Leadership – Professor; Outstanding Young Canadian Computer Science Researcher Prize from the Canadian Association of Computer Science (2014); and McGill’s Tomlinson Scientist Award for “recognition of excellence and scientific leadership.” He founded McGill’s Cyber-Physical Intelligence Lab in 2007 and still serves as its director.

Liu also briefly served as Samuel R. Thompson Chair Associate Professor in the Department of Computer Science and Engineering at the University of Nebraska-Lincoln, and worked at Hewlett-Packard Labs in Palo Alto (California) and IBM’s Thomas J. Watson Research Center (New York)

Current Students

PhD - McGill University
Co-supervisor :
PhD - McGill University
Co-supervisor :
PhD - McGill University
PhD - McGill University
PhD - McGill University
PhD - McGill University
PhD - McGill University
Master's Research - McGill University
PhD - McGill University
Co-supervisor :
PhD - McGill University
PhD - McGill University

Publications

Think Before You Act: Decision Transformers with Working Memory
Jikun Kang
Romain Laroche
Xingdi Yuan
Adam Trischler
Jie Fu
Decision Transformer-based decision-making agents have shown the ability to generalize across multiple tasks. However, their performance rel… (see more)ies on massive data and computation. We argue that this inefficiency stems from the forgetting phenomenon, in which a model memorizes its behaviors in parameters throughout training. As a result, training on a new task may deteriorate the model’s performance on previous tasks. In contrast to LLMs’ implicit memory mechanism, the human brain utilizes distributed memory storage, which helps manage and organize multiple skills efficiently, mitigating the forgetting phenomenon. Inspired by this, we propose a working memory module to store, blend, and retrieve information for different downstream tasks. Evaluation results show that the proposed method improves training efficiency and generalization in Atari games and Meta-World object manipulation tasks. Moreover, we demonstrate that memory fine-tuning further enhances the adaptability of the proposed architecture.
Accelerating Digital Twin Calibration with Warm-Start Bayesian Optimization
Abhisek Konar
Amal Feriani
Di Wu
Seowoo Jang
Digital twins are expected to play an important role in the widespread adaptation of AI-based networking solutions in the real world. The ca… (see more)libration of these virtual replicas is critical to ensure a trustworthy replication of the real environment. This work focuses on the input parameter calibration of radio access network (RAN) simulators using real network performance metrics as supervision signals. Usually, the RAN digital twin is considered a black-box function and each calibration problem is viewed as a standalone search problem. RAN simulators are slow and non-differentiable, often posing as the bottleneck in the execution time for these search problems. In this work, we aim to accelerate the search process by reducing the number of interactions with the simulator by leveraging RAN interactions from previous problems. We present a sequential Bayesian optimization framework that uses information from the past to warm-start the calibration process. Assuming that the network performance exhibits gradual and periodic changes, the stored information can be reused in future calibrations. We test our method across multiple physical sites over one week and show that using the proposed framework, we can obtain better calibration with a smaller number of interactions with the simulator during the search phase.
Adaptive Dynamic Programming for Energy-Efficient Base Station Cell Switching
Junliang Luo
Yi Tian Xu
Di Wu
M. Jenkin
Energy saving in wireless networks is growing in importance due to increasing demand for evolving new-gen cellular networks, environmental a… (see more)nd regulatory concerns, and potential energy crises arising from geopolitical tensions. In this work, we propose an approximate dynamic programming (ADP)-based method coupled with online optimization to switch on/off the cells of base stations to reduce network power consumption while maintaining adequate Quality of Service (QoS) metrics. We use a multilayer perceptron (MLP) given each state-action pair to predict the power consumption to approximate the value function in ADP for selecting the action with optimal expected power saved. To save the largest possible power consumption without deteriorating QoS, we include another MLP to predict QoS and a long short-term memory (LSTM) for predicting handovers, incorporated into an online optimization algorithm producing an adaptive QoS threshold for filtering cell switching actions based on the overall QoS history. The performance of the method is evaluated using a practical network simulator with various real-world scenarios with dynamic traffic patterns.
Anomaly Detection for Scalable Task Grouping in Reinforcement Learning-based RAN Optimization
Jimmy Li
Igor Kozlov
Di Wu
The use of learning-based methods for optimizing cellular radio access networks (RAN) has received increasing attention in recent years. Thi… (see more)s coincides with a rapid increase in the number of cell sites worldwide, driven largely by dramatic growth in cellular network traffic. Training and maintaining learned models that work well across a large number of cell sites has thus become a pertinent problem. This paper proposes a scalable framework for constructing a reinforcement learning policy bank that can perform RAN optimization across a large number of cell sites with varying traffic patterns. Central to our framework is a novel application of anomaly detection techniques to assess the compatibility between sites (tasks) and the policy bank. This allows our framework to intelligently identify when a policy can be reused for a task, and when a new policy needs to be trained and added to the policy bank. Our results show that our approach to compatibility assessment leads to an efficient use of computational resources, by allowing us to construct a performant policy bank without exhaustively training on all tasks, which makes it applicable under real-world constraints.
Optimizing Energy Saving for Wireless Networks Via Offline Decision Transformer
Yi Tian Xu
Di Wu
M. Jenkin
Seowoo Jang
With the global aim of reducing carbon emissions, energy saving for communication systems has gained tremendous attention. Efficient energy-… (see more)saving solutions are not only required to accommodate the fast growth in communication demand but solutions are also challenged by the complex nature of the load dynamics. Recent reinforcement learning (RL)-based methods have shown promising performance for network optimization problems, such as base station energy saving. However, a major limitation of these methods is the requirement of online exploration of potential solutions using a high-fidelity simulator or the need to perform exploration in a real-world environment. We circumvent this issue by proposing an offline reinforcement learning energy saving (ORES) framework that allows us to learn an efficient control policy using previously collected data. We first deploy a behavior energy-saving policy on base stations and generate a set of interaction experiences. Then, using a robust deep offline reinforcement learning algorithm, we learn an energy-saving control policy based on the collected experiences. Results from experiments conducted on a diverse collection of communication scenarios with different behavior policies showcase the effectiveness of the proposed energy-saving algorithms.
PEOPLEx: PEdestrian Opportunistic Positioning LEveraging IMU, UWB, BLE and WiFi
Pierre-Yves Lajoie
Bobak H. Baghi
Sachini Herath
Francois Hogan
This paper advances the field of pedestrian localization by introducing a unifying framework for opportunistic positioning based on nonlinea… (see more)r factor graph optimization. While many existing approaches assume constant availability of one or multiple sensing signals, our methodology employs IMU-based pedestrian inertial navigation as the backbone for sensor fusion, opportunistically integrating Ultra-Wideband (UWB), Bluetooth Low Energy (BLE), and WiFi signals when they are available in the environment. The proposed PEOPLEx framework is designed to incorporate sensing data as it becomes available, operating without any prior knowledge about the environment (e.g. anchor locations, radio frequency maps, etc.). Our contributions are twofold: 1) we introduce an opportunistic multi-sensor and real-time pedestrian positioning framework fusing the available sensor measurements; 2) we develop novel factors for adaptive scaling and coarse loop closures, significantly improving the precision of indoor positioning. Experimental validation confirms that our approach achieves accurate localization estimates in real indoor scenarios using commercial smartphones.
Probabilistic Mobility Load Balancing for Multi-band 5G and Beyond Networks
Saria Al Lahham
Di Wu
Ekram Hossain
Acheiving United Nations' SDG3 Through Empowering Health Artificial Intelligence on Resource-Constrained Mobile Devices Without Connectivity
Tianyi Yang
Tianze Yang
Shaoshan Liu
At least half of the world's population do not have access to essential health services. Worse, large numbers of households are being pushed… (see more) into poverty because they must pay for health care out of their own pockets.
FedSwarm: An Adaptive Federated Learning Framework for Scalable AIoT
Haizhou Du
Chengdong Ni
Chaoqian Cheng
Qiao Xiang
Xi Chen
Federated learning (FL) is a key solution for datadriven the Artificial Intelligence of Things (AIoT). Although much progress has been made,… (see more) scalability remains a core challenge for real-world FL deployments. Existing solutions either suffer from accuracy loss or do not fully address the connectivity dynamicity of FL systems. In this article, we tackle the scalability issue with a novel, adaptive FL framework called FedSwarm, which improves system scalability for AIoT by deploying multiple collaborative edge servers. FedSwarm has two novel features: 1) adaptiveness on the number of local updates and 2) dynamicity of the synchronization between edge devices and edge servers. We formulate FedSwarm as a local update adaptation and perdevice dynamic server selection problem and prove FedSwarm‘s convergence bound. We further design a control mechanism consisting of a learning-based algorithm for collaboratively providing local update adaptation on the servers’ side and a bonus-based strategy for spurring dynamic per-device server selection on the devices’ side. Our extensive evaluation shows that FedSwarm significantly outperforms other studies with better scalability, lower energy consumption, and higher model accuracy.
FedSwarm: An Adaptive Federated Learning Framework for Scalable AIoT
Haizhou Du
Chengdong Ni
Chaoqian Cheng
Qiao Xiang
Xi Chen
Federated learning (FL) is a key solution for datadriven the Artificial Intelligence of Things (AIoT). Although much progress has been made,… (see more) scalability remains a core challenge for real-world FL deployments. Existing solutions either suffer from accuracy loss or do not fully address the connectivity dynamicity of FL systems. In this article, we tackle the scalability issue with a novel, adaptive FL framework called FedSwarm, which improves system scalability for AIoT by deploying multiple collaborative edge servers. FedSwarm has two novel features: 1) adaptiveness on the number of local updates and 2) dynamicity of the synchronization between edge devices and edge servers. We formulate FedSwarm as a local update adaptation and perdevice dynamic server selection problem and prove FedSwarm‘s convergence bound. We further design a control mechanism consisting of a learning-based algorithm for collaboratively providing local update adaptation on the servers’ side and a bonus-based strategy for spurring dynamic per-device server selection on the devices’ side. Our extensive evaluation shows that FedSwarm significantly outperforms other studies with better scalability, lower energy consumption, and higher model accuracy.
ICE-SEARCH: A Language Model-Driven Feature Selection Approach
Tianze Yang
Tianyi Yang
Shaoshan Liu
Fuyuan Lyu
This study unveils the In-Context Evolutionary Search (ICE-SEARCH) method, the first work that melds language models (LMs) with evolutionary… (see more) algorithms for feature selection (FS) tasks and demonstrates its effectiveness in Medical Predictive Analytics (MPA) applications. ICE-SEARCH harnesses the crossover and mutation capabilities inherent in LMs within an evolutionary framework, significantly improving FS through the model's comprehensive world knowledge and its adaptability to a variety of roles. Our evaluation of this methodology spans three crucial MPA tasks: stroke, cardiovascular disease, and diabetes, where ICE-SEARCH outperforms traditional FS methods in pinpointing essential features for medical applications. ICE-SEARCH achieves State-of-the-Art (SOTA) performance in stroke prediction and diabetes prediction; the Decision-Randomized ICE-SEARCH ranks as SOTA in cardiovascular disease prediction. Our results not only demonstrate the efficacy of ICE-SEARCH in medical FS but also underscore the versatility, efficiency, and scalability of integrating LMs in FS tasks. The study emphasizes the critical role of incorporating domain-specific insights, illustrating ICE-SEARCH's robustness, generalizability, and swift convergence. This opens avenues for further research into comprehensive and intricate FS landscapes, marking a significant stride in the application of artificial intelligence in medical predictive analytics.
AICOM-MP: an AI-based monkeypox detector for resource-constrained environments
Tianyi Yang
Tianze Yang
Andrew Liu
Na An
Shaoshan Liu