Portrait of Pablo Samuel Castro

Pablo Samuel Castro

Core Industry Member
Adjunct professor, Université de Montréal, Department of Computer Science and Operations Research
Research Scientist, Google DeepMind
Research Topics
Reinforcement Learning

Biography

Pablo Samuel Castro was born and raised in Quito, Ecuador, and moved to Montréal after high school to study at McGill University. For his PhD, he studied reinforcement learning with Doina Precup and Prakash Panangaden at McGill. Castro has been working at Google for over eleven years. He is currently a staff research scientist at Google DeepMind in Montreal, where he conducts fundamental reinforcement learning research and is a regular advocate for increasing LatinX representation in the research community.

He is also an adjunct professor in the Department of Computer Science and Operations Research (DIRO) at Université de Montréal. In addition to his interest in coding, AI and math, Castro is an active musician.

Current Students

PhD - Université de Montréal
Principal supervisor :
Master's Research - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
PhD - McGill University
Principal supervisor :
PhD - McGill University
Principal supervisor :
PhD - Université de Montréal

Publications

Mind the GAP! The Challenges of Scale in Pixel-based Deep Reinforcement Learning
Ghada Sokar
Learning and Controlling Silicon Dopant Transitions in Graphene using Scanning Transmission Electron Microscopy
Max Schwarzer
Jesse Farebrother
Joshua Greaves
Ekin Dogus Cubuk
Sergei Kalinin
Igor Mordatch
Kevin M Roccapriore
We introduce a machine learning approach to determine the transition dynamics of silicon atoms on a single layer of carbon atoms, when stimu… (see more)lated by the electron beam of a scanning transmission electron microscope (STEM). Our method is data-centric, leveraging data collected on a STEM. The data samples are processed and filtered to produce symbolic representations, which we use to train a neural network to predict transition probabilities. These learned transition dynamics are then leveraged to guide a single silicon atom throughout the lattice to pre-determined target destinations. We present empirical analyses that demonstrate the efficacy and generality of our approach.
Multi-Task Reinforcement Learning Enables Parameter Scaling
Reginald McLean
Evangelos Chatzaroulas
J K Terry
Isaac Woungang
Nariman Farsad
Multi-task reinforcement learning (MTRL) aims to endow a single agent with the ability to perform well on multiple tasks. Recent works have … (see more)focused on developing novel sophisticated architectures to improve performance, often resulting in larger models; it is unclear, however, whether the performance gains are a consequence of the architecture design or the extra parameters. We argue that gains are mostly due to scale by demonstrating that naively scaling up a simple MTRL baseline to match parameter counts outperforms the more sophisticated architectures, and these gains benefit most from scaling the critic over the actor. Additionally, we explore the training stability advantages that come with task diversity, demonstrating that increasing the number of tasks can help mitigate plasticity loss. Our findings suggest that MTRL's simultaneous training across multiple tasks provides a natural framework for beneficial parameter scaling in reinforcement learning, challenging the need for complex architectural innovations.
Multi-Task Reinforcement Learning Enables Parameter Scaling
Reginald McLean
Evangelos Chatzaroulas
J K Terry
Isaac Woungang
Nariman Farsad
Multi-task reinforcement learning (MTRL) aims to endow a single agent with the ability to perform well on multiple tasks. Recent works have … (see more)focused on developing novel sophisticated architectures to improve performance, often resulting in larger models; it is unclear, however, whether the performance gains are a consequence of the architecture design or the extra parameters. We argue that gains are mostly due to scale by demonstrating that naively scaling up a simple MTRL baseline to match parameter counts outperforms the more sophisticated architectures, and these gains benefit most from scaling the critic over the actor. Additionally, we explore the training stability advantages that come with task diversity, demonstrating that increasing the number of tasks can help mitigate plasticity loss. Our findings suggest that MTRL's simultaneous training across multiple tasks provides a natural framework for beneficial parameter scaling in reinforcement learning, challenging the need for complex architectural innovations.
Optimistic critics can empower small actors
Olya Mastikhina
Dhruv Sreenivas
Actor-critic methods have been central to many of the recent advances in deep reinforcement learning. The most common approach is to use _sy… (see more)mmetric_ architectures, whereby both actor and critic have the same network topology and number of parameters. However, recent works have argued for the advantages of _asymmetric_ setups, specifically with the use of smaller actors. We perform broad empirical investigations and analyses to better understand the implications of this and find that, in general, smaller actors result in performance degradation and overfit critics. Our analyses suggest _poor data collection_, due to value underestimation, as one of the main causes for this behavior, and further highlight the crucial role the critic can play in alleviating this pathology. We explore techniques to mitigate the observed value underestimation, which enables further research in asymmetric actor-critic methods.
Optimistic critics can empower small actors
Olya Mastikhina
Dhruv Sreenivas
Actor-critic methods have been central to many of the recent advances in deep reinforcement learning. The most common approach is to use _sy… (see more)mmetric_ architectures, whereby both actor and critic have the same network topology and number of parameters. However, recent works have argued for the advantages of _asymmetric_ setups, specifically with the use of smaller actors. We perform broad empirical investigations and analyses to better understand the implications of this and find that, in general, smaller actors result in performance degradation and overfit critics. Our analyses suggest _poor data collection_, due to value underestimation, as one of the main causes for this behavior, and further highlight the crucial role the critic can play in alleviating this pathology. We explore techniques to mitigate the observed value underestimation, which enables further research in asymmetric actor-critic methods.
Don't flatten, tokenize! Unlocking the key to SoftMoE's efficacy in deep RL
Ghada Sokar
Johan Samir Obando Ceron
The use of deep neural networks in reinforcement learning (RL) often suffers from performance degradation as model size increases. While sof… (see more)t mixtures of experts (SoftMoEs) have recently shown promise in mitigating this issue for online RL, the reasons behind their effectiveness remain largely unknown. In this work we provide an in-depth analysis identifying the key factors driving this performance gain. We discover the surprising result that tokenizing the encoder output, rather than the use of multiple experts, is what is behind the efficacy of SoftMoEs. Indeed, we demonstrate that even with an appropriately scaled single expert, we are able to maintain the performance gains, largely thanks to tokenization.
Studying the Interplay Between the Actor and Critic Representations in Reinforcement Learning
Samuel Garcin
Trevor McInroe
Christopher G. Lucas
David Abel
Stefano V Albrecht
Extracting relevant information from a stream of high-dimensional observations is a central challenge for deep reinforcement learning agents… (see more). Actor-critic algorithms add further complexity to this challenge, as it is often unclear whether the same information will be relevant to both the actor and the critic. To this end, we here explore the principles that underlie effective representations for an actor and for a critic. We focus our study on understanding whether an actor and a critic will benefit from a decoupled, rather than shared, representation. Our primary finding is that when decoupled, the representations for the actor and critic systematically specialise in extracting different types of information from the environment---the actor's representation tends to focus on action-relevant information, while the critic's representation specialises in encoding value and dynamics information. Finally, we demonstrate how these insights help select representation learning objectives that play into the actor's and critic's respective knowledge specialisations, and improve performance in terms of agent returns.
Studying the Interplay Between the Actor and Critic Representations in Reinforcement Learning
Samuel Garcin
Trevor McInroe
Christopher G. Lucas
David Abel
Stefano V Albrecht
Overcoming State and Action Space Disparities in Multi-Domain, Multi-Task Reinforcement Learning
Reginald McLean
Kai Yuan
Isaac Woungang
Nariman Farsad
Current multi-task reinforcement learning (MTRL) methods have the ability to perform a large number of tasks with a single policy. However w… (see more)hen attempting to interact with a new domain, the MTRL agent would need to be re-trained due to differences in domain dynamics and structure. Because of these limitations, we are forced to train multiple policies even though tasks may have shared dynamics, leading to needing more samples and is thus sample inefficient. In this work, we explore the ability of MTRL agents to learn in various domains with various dynamics by simultaneously learning in multiple domains, without the need to fine-tune extra policies. In doing so we find that a MTRL agent trained in multiple domains induces an increase in sample efficiency of up to 70\% while maintaining the overall success rate of the MTRL agent.
Overcoming State and Action Space Disparities in Multi-Domain, Multi-Task Reinforcement Learning
Reginald McLean
Kai Yuan
Isaac Woungang
Nariman Farsad
Current multi-task reinforcement learning (MTRL) methods have the ability to perform a large number of tasks with a single policy. However w… (see more)hen attempting to interact with a new domain, the MTRL agent would need to be re-trained due to differences in domain dynamics and structure. Because of these limitations, we are forced to train multiple policies even though tasks may have shared dynamics, leading to needing more samples and is thus sample inefficient. In this work, we explore the ability of MTRL agents to learn in various domains with various dynamics by simultaneously learning in multiple domains, without the need to fine-tune extra policies. In doing so we find that a MTRL agent trained in multiple domains induces an increase in sample efficiency of up to 70\% while maintaining the overall success rate of the MTRL agent.
CALE: Continuous Arcade Learning Environment
Jesse Farebrother
We introduce the Continuous Arcade Learning Environment (CALE), an extension of the well-known Arcade Learning Environment (ALE) [Bellemare … (see more)et al., 2013]. The CALE uses the same underlying emulator of the Atari 2600 gaming system (Stella), but adds support for continuous actions. This enables the benchmarking and evaluation of continuous-control agents (such as PPO [Schulman et al., 2017] and SAC [Haarnoja et al., 2018]) and value-based agents (such as DQN [Mnih et al., 2015] and Rainbow [Hessel et al., 2018]) on the same environment suite. We provide a series of open questions and research directions that CALE enables, as well as initial baseline results using Soft Actor-Critic. CALE is available as part of the ALE athttps://github.com/Farama-Foundation/Arcade-Learning-Environment.