Portrait of Pablo Samuel Castro

Pablo Samuel Castro

Core Industry Member
Adjunct professor, Université de Montréal, Department of Computer Science and Operations Research
Research Scientist, Google DeepMind
Research Topics
Reinforcement Learning

Biography

Pablo Samuel Castro was born and raised in Quito, Ecuador, and moved to Montréal after high school to study at McGill University. For his PhD, he studied reinforcement learning with Doina Precup and Prakash Panangaden at McGill. Castro has been working at Google for over eleven years. He is currently a staff research scientist at Google DeepMind in Montreal, where he conducts fundamental reinforcement learning research and is a regular advocate for increasing LatinX representation in the research community.

He is also an adjunct professor in the Department of Computer Science and Operations Research (DIRO) at Université de Montréal. In addition to his interest in coding, AI and math, Castro is an active musician.

Current Students

PhD - Université de Montréal
Principal supervisor :
Master's Research - Université de Montréal
Collaborating researcher
PhD - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
PhD - McGill University
Principal supervisor :
PhD - McGill University
Principal supervisor :
PhD - Université de Montréal

Publications

A Comparative Analysis of Expected and Distributional Reinforcement Learning
Since their introduction a year ago, distributional approaches to reinforcement learning (distributional RL) have produced strong results re… (see more)lative to the standard approach which models expected values (expected RL). However, aside from convergence guarantees, there have been few theoretical results investigating the reasons behind the improvements distributional RL provides. In this paper we begin the investigation into this fundamental question by analyzing the differences in the tabular, linear approximation, and non-linear approximation settings. We prove that in many realizations of the tabular and linear approximation settings, distributional RL behaves exactly the same as expected RL. In cases where the two methods behave differently, distributional RL can in fact hurt performance when it does not induce identical behaviour. We then continue with an empirical analysis comparing distributional and expected RL methods in control settings with non-linear approximators to tease apart where the improvements from distributional RL methods are coming from.
Distributional reinforcement learning with linear function approximation
Despite many algorithmic advances, our theoretical understanding of practical distributional reinforcement learning methods remains limited.… (see more) One exception is Rowland et al. (2018)'s analysis of the C51 algorithm in terms of the Cramer distance, but their results only apply to the tabular setting and ignore C51's use of a softmax to produce normalized distributions. In this paper we adapt the Cramer distance to deal with arbitrary vectors. From it we derive a new distributional algorithm which is fully Cramer-based and can be combined to linear function approximation, with formal guarantees in the context of policy evaluation. In allowing the model's prediction to be any real vector, we lose the probabilistic interpretation behind the method, but otherwise maintain the appealing properties of distributional approaches. To the best of our knowledge, ours is the first proof of convergence of a distributional algorithm combined with function approximation. Perhaps surprisingly, our results provide evidence that Cramer-based distributional methods may perform worse than directly approximating the value function.
Distributional reinforcement learning with linear function approximation
Despite many algorithmic advances, our theoretical understanding of practical distributional reinforcement learning methods remains limited.… (see more) One exception is Rowland et al. (2018)'s analysis of the C51 algorithm in terms of the Cramer distance, but their results only apply to the tabular setting and ignore C51's use of a softmax to produce normalized distributions. In this paper we adapt the Cramer distance to deal with arbitrary vectors. From it we derive a new distributional algorithm which is fully Cramer-based and can be combined to linear function approximation, with formal guarantees in the context of policy evaluation. In allowing the model's prediction to be any real vector, we lose the probabilistic interpretation behind the method, but otherwise maintain the appealing properties of distributional approaches. To the best of our knowledge, ours is the first proof of convergence of a distributional algorithm combined with function approximation. Perhaps surprisingly, our results provide evidence that Cramer-based distributional methods may perform worse than directly approximating the value function.
Distributional reinforcement learning with linear function approximation
Despite many algorithmic advances, our theoretical understanding of practical distributional reinforcement learning methods remains limited.… (see more) One exception is Rowland et al. (2018)'s analysis of the C51 algorithm in terms of the Cramer distance, but their results only apply to the tabular setting and ignore C51's use of a softmax to produce normalized distributions. In this paper we adapt the Cramer distance to deal with arbitrary vectors. From it we derive a new distributional algorithm which is fully Cramer-based and can be combined to linear function approximation, with formal guarantees in the context of policy evaluation. In allowing the model's prediction to be any real vector, we lose the probabilistic interpretation behind the method, but otherwise maintain the appealing properties of distributional approaches. To the best of our knowledge, ours is the first proof of convergence of a distributional algorithm combined with function approximation. Perhaps surprisingly, our results provide evidence that Cramer-based distributional methods may perform worse than directly approximating the value function.
A Geometric Perspective on Optimal Representations for Reinforcement Learning
Will Dabney
Robert Dadashi
Adrien Ali Taiga
Dale Eric. Schuurmans
Tor Lattimore
Clare Lyle
We propose a new perspective on representation learning in reinforcement learning based on geometric properties of the space of value functi… (see more)ons. We leverage this perspective to provide formal evidence regarding the usefulness of value functions as auxiliary tasks. Our formulation considers adapting the representation to minimize the (linear) approximation of the value function of all stationary policies for a given environment. We show that this optimization reduces to making accurate predictions regarding a special class of value functions which we call adversarial value functions (AVFs). We demonstrate that using value functions as auxiliary tasks corresponds to an expected-error relaxation of our formulation, with AVFs a natural candidate, and identify a close relationship with proto-value functions (Mahadevan, 2005). We highlight characteristics of AVFs and their usefulness as auxiliary tasks in a series of experiments on the four-room domain.
A Geometric Perspective on Optimal Representations for Reinforcement Learning
Will Dabney
Robert Dadashi
Adrien Ali Taiga
Dale Schuurmans
Tor Lattimore
Clare Lyle
We propose a new perspective on representation learning in reinforcement learning based on geometric properties of the space of value functi… (see more)ons. We leverage this perspective to provide formal evidence regarding the usefulness of value functions as auxiliary tasks. Our formulation considers adapting the representation to minimize the (linear) approximation of the value function of all stationary policies for a given environment. We show that this optimization reduces to making accurate predictions regarding a special class of value functions which we call adversarial value functions (AVFs). We demonstrate that using value functions as auxiliary tasks corresponds to an expected-error relaxation of our formulation, with AVFs a natural candidate, and identify a close relationship with proto-value functions (Mahadevan, 2005). We highlight characteristics of AVFs and their usefulness as auxiliary tasks in a series of experiments on the four-room domain.
A Geometric Perspective on Optimal Representations for Reinforcement Learning
Will Dabney
Robert Dadashi
Adrien Ali Taiga
Dale Schuurmans
Tor Lattimore
Clare Lyle
Dopamine: A Research Framework for Deep Reinforcement Learning
Subhodeep Moitra
Carles Gelada
Saurabh Kumar
Deep reinforcement learning (deep RL) research has grown significantly in recent years. A number of software offerings now exist that provid… (see more)e stable, comprehensive implementations for benchmarking. At the same time, recent deep RL research has become more diverse in its goals. In this paper we introduce Dopamine, a new research framework for deep RL that aims to support some of that diversity. Dopamine is open-source, TensorFlow-based, and provides compact and reliable implementations of some state-of-the-art deep RL agents. We complement this offering with a taxonomy of the different research objectives in deep RL research. While by no means exhaustive, our analysis highlights the heterogeneity of research in the field, and the value of frameworks such as ours.