Portrait of Golnoosh Farnadi

Golnoosh Farnadi

Core Academic Member
Canada CIFAR AI Chair
Assistant Professor, McGill University, School of Computer Science
Adjunct Professor, Université de Montréal, Department of Computer Science and Operations Research
Visiting Faculty Researcher, Google
Research Topics
Deep Learning
Generative Models

Biography

Golnoosh Farnadi is an assistant professor at the School of Computer Science, McGill University, and an adjunct professor at Université de Montréal. She is a core academic member of Mila – Quebec Artificial Intelligence Institute and holds a Canada CIFAR AI Chair.

Farnadi founded and is a principal investigator of the EQUAL lab at Mila / McGill University. The EQUAL lab (EQuity & EQuality Using AI and Learning algorithms) is a cutting-edge research laboratory dedicated to advancing the fields of algorithmic fairness and responsible AI.

Current Students

PhD - HEC Montréal
Postdoctorate - McGill University
Research Intern - McGill University
Master's Research - McGill University
Co-supervisor :
Master's Research - Université de Montréal
Principal supervisor :
Collaborating researcher - UWindsor
PhD - McGill University
Co-supervisor :
Master's Research - Université de Montréal
Research Intern - McGill University
Master's Research - Polytechnique Montréal
Postdoctorate - McGill University
PhD - Université de Montréal
Co-supervisor :
Master's Research - Université de Montréal
Postdoctorate - Université de Montréal
Independent visiting researcher - HEC Montréal

Publications

Mitigating Disparate Impact of Differential Privacy in Federated Learning through Robust Clustering
Saber Malekmohammadi
Afaf Taïk
Federated Learning (FL) is a decentralized machine learning (ML) approach that keeps data localized and often incorporates Differential Priv… (see more)acy (DP) to enhance privacy guarantees. Similar to previous work on DP in ML, we observed that differentially private federated learning (DPFL) introduces performance disparities, particularly affecting minority groups. Recent work has attempted to address performance fairness in vanilla FL through clustering, but this method remains sensitive and prone to errors, which are further exacerbated by the DP noise in DPFL. To fill this gap, in this paper, we propose a novel clustered DPFL algorithm designed to effectively identify clients' clusters in highly heterogeneous settings while maintaining high accuracy with DP guarantees. To this end, we propose to cluster clients based on both their model updates and training loss values. Our proposed approach also addresses the server's uncertainties in clustering clients' model updates by employing larger batch sizes along with Gaussian Mixture Model (GMM) to alleviate the impact of noise and potential clustering errors, especially in privacy-sensitive scenarios. We provide theoretical analysis of the effectiveness of our proposed approach. We also extensively evaluate our approach across diverse data distributions and privacy budgets and show its effectiveness in mitigating the disparate impact of DP in FL settings with a small computational cost.
The Cost of Arbitrariness for Individuals: Examining the Legal and Technical Challenges of Model Multiplicity
Prakhar Ganesh
Ihsan Ibrahim Daldaban
Model multiplicity, the phenomenon where multiple models achieve similar performance despite different underlying learned functions, introdu… (see more)ces arbitrariness in model selection. While this arbitrariness may seem inconsequential in expectation, its impact on individuals can be severe. This paper explores various individual concerns stemming from multiplicity, including the effects of arbitrariness beyond final predictions, disparate arbitrariness for individuals belonging to protected groups, and the challenges associated with the arbitrariness of a single algorithmic system creating a monopoly across various contexts. It provides both an empirical examination of these concerns and a comprehensive analysis from the legal standpoint, addressing how these issues are perceived in the anti-discrimination law in Canada. We conclude the discussion with technical challenges in the current landscape of model multiplicity to meet legal requirements and the legal gap between current law and the implications of arbitrariness in model selection, highlighting relevant future research directions for both disciplines.
Advancing Cultural Inclusivity: Optimizing Embedding Spaces for Balanced Music Recommendations
Armin Moradi
Nicola Neophytou
Fairness Incentives in Response to Unfair Dynamic Pricing
Jesse Thibodeau
Hadi Nekoei
Afaf Taïk
Janarthanan Rajendran
The use of dynamic pricing by profit-maximizing firms gives rise to demand fairness concerns, measured by discrepancies in consumer groups' … (see more)demand responses to a given pricing strategy. Notably, dynamic pricing may result in buyer distributions unreflective of those of the underlying population, which can be problematic in markets where fair representation is socially desirable. To address this, policy makers might leverage tools such as taxation and subsidy to adapt policy mechanisms dependent upon their social objective. In this paper, we explore the potential for AI methods to assist such intervention strategies. To this end, we design a basic simulated economy, wherein we introduce a dynamic social planner (SP) to generate corporate taxation schedules geared to incentivizing firms towards adopting fair pricing behaviours, and to use the collected tax budget to subsidize consumption among underrepresented groups. To cover a range of possible policy scenarios, we formulate our social planner's learning problem as a multi-armed bandit, a contextual bandit and finally as a full reinforcement learning (RL) problem, evaluating welfare outcomes from each case. To alleviate the difficulty in retaining meaningful tax rates that apply to less frequently occurring brackets, we introduce FairReplayBuffer, which ensures that our RL agent samples experiences uniformly across a discretized fairness space. We find that, upon deploying a learned tax and redistribution policy, social welfare improves on that of the fairness-agnostic baseline, and approaches that of the analytically optimal fairness-aware baseline for the multi-armed and contextual bandit settings, and surpassing it by 13.19% in the full RL setting.
Learning to Build Solutions in Stochastic Matching Problems Using Flows (Student Abstract)
Promoting Fair Vaccination Strategies through Influence Maximization: A Case Study on COVID-19 Spread
Nicola Neophytou
Afaf Taïk
The aftermath of the Covid-19 pandemic saw more severe outcomes for racial minority groups and economically-deprived communities. Such dispa… (see more)rities can be explained by several factors, including unequal access to healthcare, as well as the inability of low income groups to reduce their mobility due to work or social obligations. Moreover, senior citizens were found to be more susceptible to severe symptoms, largely due to age-related health reasons. Adapting vaccine distribution strategies to consider a range of demographics is therefore essential to address these disparities. In this study, we propose a novel approach that utilizes influence maximization (IM) on mobility networks to develop vaccination strategies which incorporate demographic fairness. By considering factors such as race, social status, age, and associated risk factors, we aim to optimize vaccine distribution to achieve various fairness definitions for one or more protected attributes at a time. Through extensive experiments conducted on Covid-19 spread in three major metropolitan areas across the United States, we demonstrate the effectiveness of our proposed approach in reducing disease transmission and promoting fairness in vaccination distribution.
From Representational Harms to Quality-of-Service Harms: A Case Study on Llama 2 Safety Safeguards
Khaoula Chehbouni
Megha Roshan
Emmanuel Ma
Futian Andrew Wei
Afaf Taïk
Jackie Ck Cheung
Recent progress in large language models (LLMs) has led to their widespread adoption in various domains. However, these advancements have al… (see more)so introduced additional safety risks and raised concerns regarding their detrimental impact on already marginalized populations. Despite growing mitigation efforts to develop safety safeguards, such as supervised safety-oriented fine-tuning and leveraging safe reinforcement learning from human feedback, multiple concerns regarding the safety and ingrained biases in these models remain. Furthermore, previous work has demonstrated that models optimized for safety often display exaggerated safety behaviors, such as a tendency to refrain from responding to certain requests as a precautionary measure. As such, a clear trade-off between the helpfulness and safety of these models has been documented in the literature. In this paper, we further investigate the effectiveness of safety measures by evaluating models on already mitigated biases. Using the case of Llama 2 as an example, we illustrate how LLMs' safety responses can still encode harmful assumptions. To do so, we create a set of non-toxic prompts, which we then use to evaluate Llama models. Through our new taxonomy of LLMs responses to users, we observe that the safety/helpfulness trade-offs are more pronounced for certain demographic groups which can lead to quality-of-service harms for marginalized populations.
From Representational Harms to Quality-of-Service Harms: A Case Study on Llama 2 Safety Safeguards
Khaoula Chehbouni
Megha Roshan
Emmanuel Ma
Futian Andrew Wei
Afaf Taïk
Jackie Ck Cheung
Recent progress in large language models (LLMs) has led to their widespread adoption in various domains. However, these advancements have al… (see more)so introduced additional safety risks and raised concerns regarding their detrimental impact on already marginalized populations. Despite growing mitigation efforts to develop safety safeguards, such as supervised safety-oriented fine-tuning and leveraging safe reinforcement learning from human feedback, multiple concerns regarding the safety and ingrained biases in these models remain. Furthermore, previous work has demonstrated that models optimized for safety often display exaggerated safety behaviors, such as a tendency to refrain from responding to certain requests as a precautionary measure. As such, a clear trade-off between the helpfulness and safety of these models has been documented in the literature. In this paper, we further investigate the effectiveness of safety measures by evaluating models on already mitigated biases. Using the case of Llama 2 as an example, we illustrate how LLMs' safety responses can still encode harmful assumptions. To do so, we create a set of non-toxic prompts, which we then use to evaluate Llama models. Through our new taxonomy of LLMs responses to users, we observe that the safety/helpfulness trade-offs are more pronounced for certain demographic groups which can lead to quality-of-service harms for marginalized populations.
Balancing Act: Constraining Disparate Impact in Sparse Models
Meraj Hashemizadeh
Juan Ramirez
Rohan Sukumaran
Jose Gallego-Posada
Model pruning is a popular approach to enable the deployment of large deep learning models on edge devices with restricted computational or … (see more)storage capacities. Although sparse models achieve performance comparable to that of their dense counterparts at the level of the entire dataset, they exhibit high accuracy drops for some data sub-groups. Existing methods to mitigate this disparate impact induced by pruning (i) rely on surrogate metrics that address the problem indirectly and have limited interpretability; or (ii) scale poorly with the number of protected sub-groups in terms of computational cost. We propose a constrained optimization approach that directly addresses the disparate impact of pruning: our formulation bounds the accuracy change between the dense and sparse models, for each sub-group. This choice of constraints provides an interpretable success criterion to determine if a pruned model achieves acceptable disparity levels. Experimental results demonstrate that our technique scales reliably to problems involving large models and hundreds of protected sub-groups.
Causal Adversarial Perturbations for Individual Fairness and Robustness in Heterogeneous Data Spaces
Ahmad-reza Ehyaei
Kiarash Mohammadi
Amir-Hossein Karimi
S. Samadi
Fairness Through Domain Awareness: Mitigating Popularity Bias For Music Discovery
Rebecca Salganik
As online music platforms grow, music recommender systems play a vital role in helping users navigate and discover content within their vast… (see more) musical databases. At odds with this larger goal, is the presence of popularity bias, which causes algorithmic systems to favor mainstream content over, potentially more relevant, but niche items. In this work we explore the intrinsic relationship between music discovery and popularity bias. To mitigate this issue we propose a domain-aware, individual fairness-based approach which addresses popularity bias in graph neural network (GNNs) based recommender systems. Our approach uses individual fairness to reflect a ground truth listening experience, i.e., if two songs sound similar, this similarity should be reflected in their representations. In doing so, we facilitate meaningful music discovery that is robust to popularity bias and grounded in the music domain. We apply our BOOST methodology to two discovery based tasks, performing recommendations at both the playlist level and user level. Then, we ground our evaluation in the cold start setting, showing that our approach outperforms existing fairness benchmarks in both performance and recommendation of lesser-known content. Finally, our analysis explains why our proposed methodology is a novel and promising approach to mitigating popularity bias and improving the discovery of new and niche content in music recommender systems.
Hallucination Detox: Sensitive Neuron Dropout (SeND) for Large Language Model Training
Shahrad Mohammadzadeh
Juan David Guerra