Portrait of Golnoosh Farnadi

Golnoosh Farnadi

Core Academic Member
Canada CIFAR AI Chair
Assistant Professor, McGill University, School of Computer Science
Adjunct Professor, Université de Montréal, Department of Computer Science and Operations Research
Visiting Faculty Researcher, Google
Research Topics
Deep Learning
Generative Models

Biography

Golnoosh Farnadi is an assistant professor at the School of Computer Science, McGill University, and an adjunct professor at Université de Montréal. She is a core academic member of Mila – Quebec Artificial Intelligence Institute and holds a Canada CIFAR AI Chair.

Farnadi founded and is a principal investigator of the EQUAL lab at Mila / McGill University. The EQUAL lab (EQuity & EQuality Using AI and Learning algorithms) is a cutting-edge research laboratory dedicated to advancing the fields of algorithmic fairness and responsible AI.

Current Students

PhD - HEC Montréal
Postdoctorate - McGill University
Research Intern - McGill University
Master's Research - McGill University
Co-supervisor :
Master's Research - Université de Montréal
Principal supervisor :
Collaborating researcher - UWindsor
PhD - McGill University
Co-supervisor :
Master's Research - Université de Montréal
Research Intern - McGill University
Master's Research - Polytechnique Montréal
Postdoctorate - McGill University
PhD - Université de Montréal
Co-supervisor :
Master's Research - Université de Montréal
Postdoctorate - Université de Montréal
Independent visiting researcher - HEC Montréal

Publications

Different Horses for Different Courses: Comparing Bias Mitigation Algorithms in ML
Prakhar Ganeesh
Usman Gohar
Lu Cheng
With fairness concerns gaining significant attention in Machine Learning (ML), several bias mitigation techniques have been proposed, often … (see more)compared against each other to find the best method. These benchmarking efforts tend to use a common setup for evaluation under the assumption that providing a uniform environment ensures a fair comparison. However, bias mitigation techniques are sensitive to hyperparameter choices, random seeds, feature selection, etc., meaning that comparison on just one setting can unfairly favour certain algorithms. In this work, we show significant variance in fairness achieved by several algorithms and the influence of the learning pipeline on fairness scores. We highlight that most bias mitigation techniques can achieve comparable performance, given the freedom to perform hyperparameter optimization, suggesting that the choice of the evaluation parameters-rather than the mitigation technique itself-can sometimes create the perceived superiority of one method over another. We hope our work encourages future research on how various choices in the lifecycle of developing an algorithm impact fairness, and trends that guide the selection of appropriate algorithms.
Beyond the Safety Bundle: Auditing the Helpful and Harmless Dataset
Khaoula Chehbouni
Jonathan Colacco-Carr
Yash More
Jackie Ck Cheung
In an effort to mitigate the harms of large language models (LLMs), learning from human feedback (LHF) has been used to steer LLMs towards o… (see more)utputs that are intended to be both less harmful and more helpful. Despite the widespread adoption of LHF in practice, the quality of this feedback and its effectiveness as a safety mitigation technique remain unclear. This study addresses these issues by auditing the widely-used Helpful and Harmless (HH) dataset by Anthropic. Our work includes: (1) a thorough investigation of the dataset's content through both manual and automated evaluation; (2) experiments demonstrating the dataset's impact on models' safety; and (3) an analysis of the 100 most influential papers citing this dataset. Through our audit, we showcase how conceptualization failures and quality issues identified in the HH dataset can create additional harms by leading to disparate safety behaviors across demographic groups. Our findings highlight the need for more nuanced, context-sensitive approaches to safety mitigation in LLMs.
Beyond the Safety Bundle: Auditing the Helpful and Harmless Dataset
Khaoula Chehbouni
Jonathan Colaco Carr
Yash More
In an effort to mitigate the harms of large language models (LLMs), learning from human feedback (LHF) has been used to steer LLMs towards o… (see more)utputs that are intended to be both less harmful and more helpful. Despite the widespread adoption of LHF in practice, the quality of this feedback and its effectiveness as a safety mitigation technique remain unclear. This study addresses these issues by auditing the widely-used Helpful and Harmless (HH) dataset by Anthropic. Our work includes: (1) a thorough investigation of the dataset's content through both manual and automated evaluation; (2) experiments demonstrating the dataset's impact on models' safety; and (3) an analysis of the 100 most influential papers citing this dataset. Through our audit, we showcase how conceptualization failures and quality issues identified in the HH dataset can create additional harms by leading to disparate safety behaviors across demographic groups. Our findings highlight the need for more nuanced, context-sensitive approaches to safety mitigation in LLMs.
Different Horses for Different Courses: Comparing Bias Mitigation Algorithms in ML
Prakhar Ganeesh
Usman Gohar
Lu Cheng
With fairness concerns gaining significant attention in Machine Learning (ML), several bias mitigation techniques have been proposed, often … (see more)compared against each other to find the best method. These benchmarking efforts tend to use a common setup for evaluation under the assumption that providing a uniform environment ensures a fair comparison. However, bias mitigation techniques are sensitive to hyperparameter choices, random seeds, feature selection, etc., meaning that comparison on just one setting can unfairly favour certain algorithms. In this work, we show significant variance in fairness achieved by several algorithms and the influence of the learning pipeline on fairness scores. We highlight that most bias mitigation techniques can achieve comparable performance, given the freedom to perform hyperparameter optimization, suggesting that the choice of the evaluation parameters-rather than the mitigation technique itself-can sometimes create the perceived superiority of one method over another. We hope our work encourages future research on how various choices in the lifecycle of developing an algorithm impact fairness, and trends that guide the selection of appropriate algorithms.
Multilingual Hallucination Gaps in Large Language Models
Cl'ea Chataigner
Afaf Taïk
Large language models (LLMs) are increasingly used as alternatives to traditional search engines given their capacity to generate text that … (see more)resembles human language. However, this shift is concerning, as LLMs often generate hallucinations, misleading or false information that appears highly credible. In this study, we explore the phenomenon of hallucinations across multiple languages in freeform text generation, focusing on what we call multilingual hallucination gaps. These gaps reflect differences in the frequency of hallucinated answers depending on the prompt and language used. To quantify such hallucinations, we used the FactScore metric and extended its framework to a multilingual setting. We conducted experiments using LLMs from the LLaMA, Qwen, and Aya families, generating biographies in 19 languages and comparing the results to Wikipedia pages. Our results reveal variations in hallucination rates, especially between high and low resource languages, raising important questions about LLM multilingual performance and the challenges in evaluating hallucinations in multilingual freeform text generation.
Multilingual Hallucination Gaps in Large Language Models
Cl'ea Chataigner
Afaf Taïk
Large language models (LLMs) are increasingly used as alternatives to traditional search engines given their capacity to generate text that … (see more)resembles human language. However, this shift is concerning, as LLMs often generate hallucinations, misleading or false information that appears highly credible. In this study, we explore the phenomenon of hallucinations across multiple languages in freeform text generation, focusing on what we call multilingual hallucination gaps. These gaps reflect differences in the frequency of hallucinated answers depending on the prompt and language used. To quantify such hallucinations, we used the FactScore metric and extended its framework to a multilingual setting. We conducted experiments using LLMs from the LLaMA, Qwen, and Aya families, generating biographies in 19 languages and comparing the results to Wikipedia pages. Our results reveal variations in hallucination rates, especially between high and low resource languages, raising important questions about LLM multilingual performance and the challenges in evaluating hallucinations in multilingual freeform text generation.
Multilingual Hallucination Gaps in Large Language Models
Cl'ea Chataigner
Afaf Taïk
Large language models (LLMs) are increasingly used as alternatives to traditional search engines given their capacity to generate text that … (see more)resembles human language. However, this shift is concerning, as LLMs often generate hallucinations, misleading or false information that appears highly credible. In this study, we explore the phenomenon of hallucinations across multiple languages in freeform text generation, focusing on what we call multilingual hallucination gaps. These gaps reflect differences in the frequency of hallucinated answers depending on the prompt and language used. To quantify such hallucinations, we used the FactScore metric and extended its framework to a multilingual setting. We conducted experiments using LLMs from the LLaMA, Qwen, and Aya families, generating biographies in 19 languages and comparing the results to Wikipedia pages. Our results reveal variations in hallucination rates, especially between high and low resource languages, raising important questions about LLM multilingual performance and the challenges in evaluating hallucinations in multilingual freeform text generation.
FairLoRA: Unpacking Bias Mitigation in Vision Models with Fairness-Driven Low-Rank Adaptation
Rohan Sukumaran
Aarash Feizi
Adriana Romero-Sorian
Hallucination Detox: Sensitive Neuron Dropout (SeND) for Large Language Model Training
Shahrad Mohammadzadeh
Juan David Guerra
As large language models (LLMs) are increasingly deployed across various industries, concerns regarding their reliability, particularly due … (see more)to hallucinations - outputs that are factually inaccurate or irrelevant to user input - have grown. Our research investigates the relationship between the training process and the emergence of hallucinations to address a key gap in existing research that focuses primarily on post hoc detection and mitigation strategies. Using models from the Pythia suite (70M - 12B parameters) and several hallucination detection metrics, we analyze hallucination trends throughout training and explore LLM internal dynamics. We introduce Sensitivity Dropout (SenD), a novel training protocol designed to mitigate hallucinations by reducing variance during training. SenD achieves this by deterministically dropping embedding indices with significant variability, referred to as Sensitive Embedding Indices. In addition, we develop an unsupervised hallucination detection metric, Efficient EigenScore (EES), which approximates the traditional EigenScore at 2x speed. This efficient metric is integrated into our protocol, allowing SenD to be both computationally scalable and effective at reducing hallucinations. Our empirical evaluation demonstrates that our approach improves LLM reliability at test time by up to 40% compared to normal training while also providing an efficient method to improve factual accuracy when adapting LLMs to Wikipedia, Medical, and LegalBench domains.
Hallucination Detox: Sensitivity Dropout (SenD) for Large Language Model Training
Shahrad Mohammadzadeh
Juan David Guerra
Hallucination Detox: Sensitivity Dropout (SenD) for Large Language Model Training
Shahrad Mohammadzadeh
Juan David Guerra
Hallucination Detox: Sensitive Neuron Dropout (SeND) for Large Language Model Training
Shahrad Mohammadzadeh
Juan David Guerra
As large language models (LLMs) become increasingly deployed across various industries, concerns regarding their reliability, particularly d… (see more)ue to hallucinations-outputs that are factually inaccurate or irrelevant to user input-have grown. Our research investigates the relationship between the training process and the emergence of hallucinations to address a key gap in existing research that focuses primarily on post hoc detection and mitigation strategies. Using models from the Pythia suite (70M-12B parameters) and several hallucination detection metrics, we analyze hallucination trends throughout training and explore LLM internal dynamics. We introduce SEnsitive Neuron Dropout (SeND), a novel training protocol designed to mitigate hallucinations by reducing variance during training. SeND achieves this by deterministically dropping neurons with significant variability on a dataset, referred to as Sensitive Neurons. In addition, we develop an unsupervised hallucination detection metric, Efficient EigenScore (EES), which approximates the traditional EigenScore in 2x speed. This efficient metric is integrated into our protocol, allowing SeND to be both computationally scalable and effective at reducing hallucinations. Our empirical evaluation demonstrates that our approach improves LLM reliability at test time by up to 40% compared to normal training while also providing an efficient method to improve factual accuracy when adapting LLMs to domains such as Wikipedia and Medical datasets.