Portrait of Chris Pal

Chris Pal

Core Academic Member
Canada CIFAR AI Chair
Full Professor, Polytechnique Montréal, Department of Computer Engineering and Software Engineering
Assistant Professor, Université de Montréal, Department of Computer Science and Operations Research
Research Topics
Deep Learning

Biography

Christopher Pal is a Canada CIFAR AI Chair, full professor at Polytechnique Montréal and adjunct professor in the Department of Computer Science and Operations Research (DIRO) at Université de Montréal. He is also a Distinguished Scientist at ServiceNow Research.

Pal has been involved in AI and machine learning research for over twenty-five years and has published extensively on large-scale language modelling methods and generative modelling techniques. He has a PhD in computer science from the University of Waterloo.

Current Students

Collaborating researcher - Formerly McGill University (but ending)
Postdoctorate - HEC Montréal
Principal supervisor :
Collaborating researcher - McGill University
Principal supervisor :
Master's Research - Université de Montréal
PhD - Polytechnique Montréal
Collaborating Alumni - McGill University
Principal supervisor :
PhD - Université de Montréal
Principal supervisor :
PhD - Polytechnique Montréal
Master's Research - Université de Montréal
Co-supervisor :
Collaborating Alumni - Polytechnique Montréal
PhD - Polytechnique Montréal
Postdoctorate - McGill University
Master's Research - Polytechnique Montréal
PhD - Université de Montréal
Co-supervisor :
Master's Research - Concordia University
Co-supervisor :
Collaborating researcher - Université de Montréal
Master's Research - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
PhD - Polytechnique Montréal
PhD - Polytechnique Montréal
PhD - École de technologie suprérieure
PhD - Université de Montréal
Principal supervisor :
Postdoctorate - HEC Montréal
Principal supervisor :
PhD - Polytechnique Montréal
Principal supervisor :
PhD - McGill University
Principal supervisor :
PhD - Polytechnique Montréal
PhD - Université de Montréal

Publications

Block-State Transformers
Block-State Transformers
Block-State Transformers
Block-State Transformers
State space models (SSMs) have shown impressive results on tasks that require modeling long-range dependencies and efficiently scale to long… (see more) sequences owing to their subquadratic runtime complexity. Originally designed for continuous signals, SSMs have shown superior performance on a plethora of tasks, in vision and audio; however, SSMs still lag Transformer performance in Language Modeling tasks. In this work, we propose a hybrid layer named Block-State Transformer (BST), that internally combines an SSM sublayer for long-range contextualization, and a Block Transformer sublayer for short-term representation of sequences. We study three different, and completely parallelizable, variants that integrate SSMs and block-wise attention. We show that our model outperforms similar Transformer-based architectures on language modeling perplexity and generalizes to longer sequences. In addition, the Block-State Transformer demonstrates more than tenfold increase in speed at the layer level compared to the Block-Recurrent Transformer when model parallelization is employed.
Block-State Transformers
Improving Generalization in Task-oriented Dialogues with Workflows and Action Plans
Stefania Raimondo
Xiaotian Liu
David Vazquez
Hector. Palacios
Wuerstchen: An Efficient Architecture for Large-Scale Text-to-Image Diffusion Models
Pablo Pernias
Dominic Rampas
Mats Leon Richter
Marc Aubreville
We introduce W\"urstchen, a novel architecture for text-to-image synthesis that combines competitive performance with unprecedented cost-eff… (see more)ectiveness for large-scale text-to-image diffusion models. A key contribution of our work is to develop a latent diffusion technique in which we learn a detailed but extremely compact semantic image representation used to guide the diffusion process. This highly compressed representation of an image provides much more detailed guidance compared to latent representations of language and this significantly reduces the computational requirements to achieve state-of-the-art results. Our approach also improves the quality of text-conditioned image generation based on our user preference study. The training requirements of our approach consists of 24,602 A100-GPU hours - compared to Stable Diffusion 2.1's 200,000 GPU hours. Our approach also requires less training data to achieve these results. Furthermore, our compact latent representations allows us to perform inference over twice as fast, slashing the usual costs and carbon footprint of a state-of-the-art (SOTA) diffusion model significantly, without compromising the end performance. In a broader comparison against SOTA models our approach is substantially more efficient and compares favorably in terms of image quality. We believe that this work motivates more emphasis on the prioritization of both performance and computational accessibility.
ArK: Augmented Reality with Knowledge Interactive Emergent Ability
Qiuyuan Huang
J. Park
Abhinav Gupta
Pan Lu
Paul N. Bennett
Ran Gong
Subhojit Som
Baolin Peng
Owais Khan Mohammed
Yejin Choi
Jianfeng Gao
Despite the growing adoption of mixed reality and interactive AI agents, it remains challenging for these systems to generate high quality 2… (see more)D/3D scenes in unseen environments. The common practice requires deploying an AI agent to collect large amounts of data for model training for every new task. This process is costly, or even impossible, for many domains. In this study, we develop an infinite agent that learns to transfer knowledge memory from general foundation models (e.g. GPT4, DALLE) to novel domains or scenarios for scene understanding and generation in the physical or virtual world. The heart of our approach is an emerging mechanism, dubbed Augmented Reality with Knowledge Inference Interaction (ArK), which leverages knowledge-memory to generate scenes in unseen physical world and virtual reality environments. The knowledge interactive emergent ability (Figure 1) is demonstrated as the observation learns i) micro-action of cross-modality: in multi-modality models to collect a large amount of relevant knowledge memory data for each interaction task (e.g., unseen scene understanding) from the physical reality; and ii) macro-behavior of reality-agnostic: in mix-reality environments to improve interactions that tailor to different characterized roles, target variables, collaborative information, and so on. We validate the effectiveness of ArK on the scene generation and editing tasks. We show that our ArK approach, combined with large foundation models, significantly improves the quality of generated 2D/3D scenes, compared to baselines, demonstrating the potential benefit of incorporating ArK in generative AI for applications such as metaverse and gaming simulation.
Controllable Image Generation via Collage Representations
Arantxa Casanova
Marlene Careil
Jakob Verbeek
Michal Drozdzal
Conservative objective models are a special kind of contrastive divergence-based energy model
Christopher Beckham
In this work we theoretically show that conservative objective models (COMs) for offline model-based optimisation (MBO) are a special kind o… (see more)f contrastive divergence-based energy model, one where the energy function represents both the unconditional probability of the input and the conditional probability of the reward variable. While the initial formulation only samples modes from its learned distribution, we propose a simple fix that replaces its gradient ascent sampler with a Langevin MCMC sampler. This gives rise to a special probabilistic model where the probability of sampling an input is proportional to its predicted reward. Lastly, we show that better samples can be obtained if the model is decoupled so that the unconditional and conditional probabilities are modelled separately.
Visual Question Answering From Another Perspective: CLEVR Mental Rotation Tests
Christopher Beckham
Sina Honari
Proactive Contact Tracing
Prateek Gupta
Nasim Rahaman
Hannah Alsdurf
Nanor Minoyan
Soren Harnois-Leblanc
Joanna Merckx
Andrew Robert Williams
Victor Schmidt
Akshay Patel
Yang Zhang
Bernhard Schölkopf